A shorter proof of the Smith normal form of skew-Hadamard matrices and their designs

İlhan Hacıoğlu* and Aytül Keman†

Abstract

We provide a shorter algebraic proof for the Smith normal form of skew-Hadamard matrices and the related designs.

Keywords: p-rank, Hadamard design, Smith normal form.

2000 AMS Classification: 20C08, 51E12, 05B20

1. Introduction

Smith normal forms and p-ranks of designs can help distinguish non-isomorphic designs with the same parameters. So it is interesting to know their Smith normal form explicitly. Smith normal forms of some designs were computed in [2],[3] and [5]. In this article we give a shorter proof for the Smith normal form of skew-Hadamard matrices and their designs.

A Hadamard matrix H of order n is an $n \times n$ matrix whose elements are ± 1 and which satisfies $HH^T = nI_n$. It is skew-Hadamard matrix if, it also satisfies $H + H^T = 2I_n$. For more information about the Hadamard matrices please see [1], [9]. Similar definitions stated below can be found in [4], [5], [6], [7], [8], [9].

The incidence matrix of a Hadamard $(4m - 1, 2m, m)$ design D is a $4m - 1$ by $4m - 1$ $(0, 1)$-matrix A that satisfies

$$AA^T = A^TA = mI + mJ.$$

The complementary design \overline{D} is a $(4m - 1, 2m - 1, m - 1)$ design with incidence matrix $J - A$. A skew-Hadamard $(4m - 1, 2m, m)$ design is a hadamard design that satisfies(after some row and column permutations)

$$A + A^T = I + J$$

*Department of Mathematics, Arts and Science Faculty Çanakkale Onsekiz Mart University, 17100 Çanakkale,Turkey, Email: hacioglu@comu.edu.tr
†Department of Mathematics, Arts and Science Faculty Çanakkale Onsekiz Mart University, 17100 Çanakkale,Turkey, Email: aytulkeman@hotmail.com
Integral Equivalence: If A and B are matrices over the ring \mathbb{Z} of integers, A and B are called equivalent ($A \sim B$) if there are \mathbb{Z}-matrices P and Q, of determinant ± 1, such that

$$B = PAQ$$

which means that one can be obtained from the other by a sequence of the following operations:

- Reorder the rows,
- Negate some row,
- Add an integer multiple of one row to another,

and the corresponding column operations.

Smith Normal Form: If A is any $n \times n$, \mathbb{Z}-matrix, then there is a unique \mathbb{Z}-matrix $S = \text{diag}(a_1, a_2, ..., a_n)$ such that $A \sim S$ and

$$a_1|a_2|...|a_r, a_{r+1} = \ldots = a_n = 0,$$

where the a_i are non-negative. The greatest common divisor of i by i subdeterminants of A is

$$a_1a_2a_3...a_i.$$

The a_i are called invariants factors of A and S is the Smith normal form $(\text{SNF}(A))$ of A.

p-Rank: The p-rank of an $n \times n$, \mathbb{Z}-matrix A is the rank of A over a field of characteristic p and is denoted by $\text{rank}_p(A)$. The p-rank of A is related to the invariant factors $a_1, a_2, ..., a_n$ by

$$\text{rank}_p(A) = \max\{i : p \text{ does not divide } a_i\}$$

2. Proof of the main theorem

2.1. Proposition. ([6] or [8]): Let H be a Hadamard matrix of order $4m$ with invariant factors $h_1, ..., h_{4m}$. Then $h_1 = 1$, $h_2 = 2$, and $h_ih_{4m+1-i} = 4m$ ($i = 1, ..., 4m$).

2.2. Theorem. ([7]): Let $A, B, C = A + B$, be $n \times n$ matrices over \mathbb{Z}, with invariant factors $h_1(A)|...|h_n(A), h_1(B)|...|h_n(B), h_1(C)|...|h_n(C)$, respectively. Then

$$\gcd(h_i(A), h_j(B))|h_{i+j-1}(A + B)$$

for any indices i, j with $1 \leq i, j \leq n$, $i + j - 1 \leq n$, where \gcd denotes greatest common divisor.

2.3. Theorem. ([4]): Let D be a skew-Hadamard $(4m - 1, 2m, m)$ design. Suppose that p divides m. Then $\text{rank}_p(D) = 2m - 1$ and $\text{rank}_p(D') = 2m$.

The author in [5] proves the following theorem by using completely different method. Here we provide a shorter algebraic proof for this theorem and the corollary following it.
2.4. Theorem. A skew-Hadamard matrix of order $4m$ has Smith normal form
\[
\text{diag}[1, 2, \ldots, 2m, \ldots, 2m, 4m].
\]

Proof. Applying Theorem 2.2 with $A = H$ and $B = H^T$ we get $gcd(h_i(H), h_j(H^T)) \mid 2$ which means that $gcd(h_i(H), h_j(H^T)) = 1$ or 2 where $1 \leq i, j \leq 4m$, $i+j-1 \leq 4m$.

If $m = 1$ then we have a skew-Hadamard matrix of order 4 and by proposition 1 the result follows. Assume that $m > 1$ then by proposition 1 we know that $h_1(H) = 1$, $h_2(H) = 2$, $h_{4m-1}(H) = 2m$ and $h_{4m}(H) = 4m$. Since $SNF(H) = SNF(H^T)$ assume that $h_{2m}(H) = 2k$ and $h_{2m}(H^T) = 2k$ where $k \neq 1$ and k is a divisor of m. In this case $i = j = 2m$ and Theorem 2.2 gives us $gcd(h_i(H), h_j(H^T)) = 2k|2$.

But this is a contradiction since $k \neq 1$. So $k = 1$ which means that $h_{2m}(H) = h_{2m}(H^T) = 2$. So all the first $2m$ elements except the first one have to be 2. Since we found the first $2m$ elements, using proposition 1 again we obtain the remaining elements namely $h_{2m+1}(H) = h_{2m+2}(H) = \ldots = h_{4m-1}(H) = 2m$ and $h_{4m}(H) = 4m$. □

2.5. Corollary. The Smith normal form of the incidence matrix of a skew-Hadamard $(4m - 1, 2m, m)$ design is
\[
\text{diag}[1, \ldots, 1, m, \ldots, m, 2m].
\]

Proof. By [5] any skew-Hadamard matrix of order $4m$ is integrally equivalent to $[1] \oplus (2A)$. This means that all the invariant factors of A are half of the corresponding invariant factors of H except the first one. So the result follows. □

Note that we know from Theorem 2.3 that $\text{rank}_p A = 2m - 1$ which agrees with our result.

By using similar techniques that we used above we get the Smith normal form of the complementary skew-Hadamard design:

2.6. Corollary. The Smith normal form of the incidence matrix of a skew-Hadamard $(4m - 1, 2m - 1, m - 1)$ design is
\[
\text{diag}[1, \ldots, 1, m, \ldots, m, 2m - 1].
\]

References

