A note on the endomorphism ring of finitely presented modules of the projective dimension ≤ 1

Serap Şahinkaya*, Arda Kör† and M. Tamer Koşan‡

Abstract

In this paper, we study the behavior of endomorphism rings of a cyclic, finitely presented module of projective dimension ≤ 1. This class of modules extends to arbitrary rings the class of couniformly presented modules over local rings.

2000 AMS Classification: 16D50.

Keywords: Couniformly presented module, Semilocal ring, Monogeny class, Epigeny class.

Received 25 : 11 : 2011 : Accepted 17 : 07 : 2013 Doi : 10.15672/HJMS.2014437518

1. Introduction

Throughout this paper, all rings will be associative with identity and modules will be unital right modules. For any ring R, the Jacobson radical of R will be denoted by $J(R)$.

Recall that M_R is couniform if it has dual Goldie dimension one (if and only if it is non-zero and the sum of any two proper submodules of M_R is a proper submodule of M_R). It is well known that a projective right module P_R is couniform if and only if $\text{End}(P_R)$ is a local ring, if and only if there exists an idempotent $e \in R$ with $P_R \cong eR$ and eRe a local ring, if and only if is a finitely generated module with a unique maximal submodule.

In [7], Facchini and Girardi introduced and studied the notion of couniformly presented modules. A module M_R is called couniformly presented if it is non-zero and there exists an exact sequence

$$0 \rightarrow C_R \xrightarrow{i} P_R \rightarrow M_R \rightarrow 0$$

*Department of Mathematics, Gebze Institute of Technology, Çayirova Campus, 41400, Gebze- Kocaeli, Turkey
Email: ssahinkaya@gyte.edu.tr
† Email: akor@gyte.edu.tr
‡ Email: mtkosan@gyte.edu.tr
with P_R projective and both C_R and P_R couniform modules. In this case, every endomorphism f of M_R lifts to an endomorphism f_0 of its projective cover P_R, and we will denote by f_1 the restriction to C_R of f_0. Hence we have a commutative diagram

$$
\begin{array}{cccc}
0 & \rightarrow & C_R & \xrightarrow{\iota} & P_R & \rightarrow & M_R & \rightarrow & 0 \\
\downarrow f_1 & & \downarrow f_0 & & \downarrow f & \\
0 & \rightarrow & C_R & \xrightarrow{\iota} & P_R & \rightarrow & M_R & \rightarrow & 0.
\end{array}
$$

In [7, Theorem 2.5], Facchini and Girardi proved that:

- Let $0 \rightarrow C_R \rightarrow P_R \rightarrow M_R \rightarrow 0$ be a couniform presentation of a couniformly presented module M_R. Set $K := \{ f \in \text{End}(M_R) \mid f \text{ is not surjective} \}$ and $I := \{ f \in \text{End}(M_R) \mid f_1: C_R \rightarrow C_R \text{ is not surjective} \}$. Then K and I are completely prime two-sided ideals of $\text{End}(M_R)$, and the union $K \cup I$ is the set of all non-invertible elements of $\text{End}(M_R)$. Moreover, one of the following two conditions holds:

(a) Either $\text{End}(M_R)$ is a local ring, or

(b) K and I are the two maximal right, maximal left ideals of $\text{End}(M_R)$.

If M_R and M_R' are two couniformly presented modules with couniform presentations $0 \rightarrow C_R \rightarrow P_R \rightarrow M_R \rightarrow 0$ and $0 \rightarrow C_R' \rightarrow P_R' \rightarrow M_R' \rightarrow 0$, we say that M_R and M_R' have the same lower part, and we write $[M_R]_l = [M_R']_l$, if there are two homomorphisms $f_0: P_R \rightarrow P_R'$ and $f_0': P_R' \rightarrow P_R$ such that $f_0(C_R) = C_R'$ and $f_0'(C_R') = C_R$.

Recall that a ring R is semilocal if $R/J(R)$ is semisimple artinian, that is, isomorphic to a finite direct product of rings $M_n(D_i)$ of $n \times n$ matrices over division rings D_i. A ring R is homogeneous semilocal if $R/J(R)$ is simple artinian, that is, isomorphic to the ring $M_n(D)$ of all $n \times n$ matrices for some positive integer n and some division ring D [2, 4]. Examples of such rings include all local rings and all simple Artinian rings. If R is a homogeneous semilocal ring, then so are the rings eRe and $M_n(R)$, where e is a nonzero idempotent element of R and $M_n(R)$ is the matrix ring over R. Also, homogeneous semilocal rings appear in a natural way when one localizes a right Noetherian ring with respect to a right localizable prime ideal.

In [4], Corisello and Facchini showed that:

- a homogeneous semilocal ring has a unique maximal proper two-sided ideal and a unique simple module up to isomorphism. Similarly, as in the case of local rings, a homogeneous semilocal ring has only one indecomposable projective module P_R up to isomorphism, and all projective modules are direct sums of copies of this P_R.

- for a module M over any ring R, the Krull-Schmidt theorem holds for M provided $\text{End}_R(M)$ is homogeneous semilocal—that is, the direct sum decomposition of M into indecomposable summands is unique up to isomorphism.

In [2], Barioli-Facchini-Raggi proved that:

- The later result fails to extend to modules M_R with finite direct sum decompositions whose indecomposable summands have homogeneous semilocal endomorphism rings.

- If a module M over a ring R has two decompositions $M = M_1 \oplus \cdots \oplus M_t = N_1 \oplus \cdots \oplus N_s$ where all the summands are indecomposable with homogeneous semilocal endomorphism rings, then these two decompositions are isomorphic.
2. The endomorphism ring

The following results describe the endomorphism ring of a cyclic, finitely presented module of projective dimension \(\leq 1 \) over a local ring. Throughout this paper, we will assume that \(M_R \neq 0 \).

2.1. Theorem. Let \(R \) be a local ring and let \(M_R := R_R/I \) be a cyclic, finitely presented module of projective dimension \(\leq 1 \). Suppose \(\text{Ext}^1_R(M_R, R_R) = 0 \).

Assume \(0 \neq I \neq R \) and let \(E \) be the idealizer of the right ideal \(I \) of \(R \), that is, the set of all \(r \in R \) with \(rI \subseteq I \), so that \(\text{End}(M_R) \cong E/I \). Set \(L := \{ r \in R \mid rI \subseteq IJ(R) \} \) and \(K := E \cap J(R) \). Let \(\psi: E \to \text{End}_R(I/IJ(R)) \) be the ring morphism defined by

\[\psi(e)(x + IJ(R)) = ex + IJ(R), \]

for every \(e \in E \) and \(x \in I \). Let \(n \) be the dimension of the right vector space \(I/IJ(R) \) over the division ring \(R/J(R) \). Then:

1. \(L \) and \(K \) are prime two-sided ideals of \(E \) containing \(I \) and \(K \) is a completely prime ideal of \(E \);
2. For every \(e \in E \), the element \(e + I \) of \(E/I \) is invertible in \(E/I \) if and only if \(e + J(R) \) is invertible in \(R/J(R) \) and \(\psi(e) \) is invertible in \(\text{End}_R(I/IJ(R)) \);
3. The quotient ring \(E/L \) is isomorphic to the ring \(M_n(R/J(R)) \) of all \(n \times n \) matrices over the division ring \(R/J(R) \);
4. Exactly one of the following two conditions holds:
 a. Either \(K \subseteq L \), in which case \(E/I \) is a homogeneous semilocal ring with Jacobson radical \(L/I \), or
 b. \(L \) and \(K \) are not comparable.

Proof. (1) and (3). Notice that \(L \) is contained in \(E \) and is the kernel of \(\psi \), so that \(L \) is a two-sided ideal of \(E \). Trivially, \(I \) is contained in \(L \). Let us prove that \(\psi \) is onto. Let \(f: I/IJ(R) \to I/IJ(R) \) be a morphism. Since \(M_R := R_R/I \) is of projective dimension \(\leq 1 \), the ideal \(I_R \) is projective, so that \(f \) lifts to a morphism \(f': I_R \to I_R \). Apply the functor \(\text{Hom}(_ , R_R) \) to the exact sequence \(0 \to I_R \to R_R \to M_R \to 0 \), getting a short exact sequence

\[0 \to \text{Hom}(M_R, R_R) \to \text{Hom}(R_R, R_R) \to \text{Hom}(I_R, R_R) \to 0 \]

because \(\text{Ext}^1_R(M_R, R_R) = 0 \). Hence \(f' \) can be extended to a morphism \(f'': R_R \to R_R \), which is necessarily left multiplication by an element \(r \in R \). Since \(f'' \) restricts to the endomorphism \(f' \) of \(I_R \), we get that \(r \in E \), and \(\psi(e) = f \). This proves that \(\psi \) is an onto ring morphism, so that

\[E/L \cong E/\ker \psi \cong \text{End}_R(I/IJ(R)) \cong M_n(R/J(R)). \]

This proves (3).

As \(\text{End}_R(I/IJ(R)) \cong M_n(R/J(R)) \) is a simple ring, it follows that \(L \) is a prime ideal and a maximal two-sided ideal. Similarly, \(K \) is the kernel of the composite morphism \(\varphi: E \to R/J(R) \) of the embedding \(E \to R \) and the canonical projection \(R \to R/J(R) \). Since \(R/J(R) \) is a division ring, we get that \(K \) is a completely prime, two-sided ideal of \(E \) containing \(I \). This concludes the proof of (1).
(2). \(\Rightarrow\) Since \(\varphi(I) = 0\) and \(\psi(I) = 0\), the morphisms \(\varphi\) and \(\psi\) induce morphisms
\(\widetilde{\varphi}: E/I \to R/J(R)\) and \(\widetilde{\psi}: E/I \to \text{End}(I/IJ(R))\), respectively. Hence \(e + I\) invertible implies \(\varphi(e) = e + J(R)\) invertible in \(R/J(R)\) and \(\psi(e)\) is invertible in \(\text{End}_R(I/IJ(R))\).

\(\Leftarrow\) Assume that \(e \in E\) and that \(\varphi(e)\) and \(\psi(e)\) are invertible in \(R/J(R)\) and \(\text{End}_R(I/IJ(R))\), respectively. Then we have a commutative diagram with exact rows

\[
\begin{array}{ccccccc}
0 & \rightarrow & I & \rightarrow & R_R & \rightarrow & R_R/I & \rightarrow & 0 \\
\downarrow{\epsilon} && \downarrow{\epsilon} && \downarrow{\epsilon} && \downarrow{\epsilon} \\
0 & \rightarrow & I & \rightarrow & R_R & \rightarrow & R_R/I & \rightarrow & 0.
\end{array}
\]

Now \(\varphi(e) = e + J(R)\) invertible implies that \(e \in E \setminus J(R)\), and so \(e\) is invertible in \(R\). Hence the middle vertical arrow is an isomorphism. Since \(\psi(e)\) is invertible, it is an automorphism of \(I/IJ(R)\), and so \(e(I/IJ(R)) = I/IJ(R)\), that is, \(eI + IJ(R) = I\). By Nakayama’s Lemma, \(eI = I\). Hence the left vertical arrow is an epimorphism. By the Snake Lemma, the right vertical arrow is a monomorphism, hence an isomorphism. That is, \(e + I\) is invertible in \(E/I\).

(4) We have the three cases (a) \(L \subseteq K\), (b) \(K \subseteq L\), and (c) \(L \nsubsetneq K\) and \(K \nsubseteq L\).

Assume \(L \subseteq K\). In this case, \(L \subseteq K \subseteq E\) implies that \(0 \subseteq K/L \subseteq E/L\), so that \(E/L \cong M_n(R/J(R))\) has a proper non-zero two-sided ideal. This is impossible, because \(M_n(R/J)\) is a simple ring. Hence this case cannot occur.

Assume \(K \subseteq L\). From (2), it follows that an element \(e + I\) of \(E/I\) is invertible in \(E/I\) if and only if \(e + J(R)\) is invertible in \(R/J(R)\) and \(e + L\) is invertible in \(E/L\). Hence, in order to prove (4) in this case \(K \subseteq L\), it suffices to prove that \(J(E/I) = L/I\).

\(\subseteq\) If \(e + I \in J(E/I)\), then \(1 - xey + I\) is invertible in \(E/I\) for every \(x, y \in E\). Thus \(1 - xey + L\) is invertible in \(E/L\) for all \(x, y \in E\), so that \(e + L \in J(E/L)\). But \(E/L \cong M_n(R/J(R))\) has Jacobson radical zero so that \(e \in L\).

\(\supseteq\) Take \(l + I \in L/I\) with \(l \in L\). Then \(1 - xly + L = 1 + L\) in \(E/L\) for every \(x, y \in E\). Hence \(1 - xly + L\) is invertible in \(E/L\). In particular, \(1 - xly \notin L\). Thus \(1 - xly \notin K\), so that \(1 - xly \notin J(R)\). As \(R/J(R)\) is a division ring, it follows that \(1 - xly + J(R)\) is invertible in \(R/J(R)\). Thus \(1 - xly + I\) is invertible in \(E/I\), and \(l \in J(E/I)\).

It is known that a finitely presented module over a semilocal ring always has a semilocal endomorphism ring. We have the following natural question.

2.2. Question. Characterize \(J(E/I)\). This was done in [1] for cyclically presented modules.

As far as Question 2.2 is concerned, notice that, in the proof of Theorem 2.1(2), we have seen that the mapping

\[
\tilde{\varphi} \times \tilde{\psi}: E/J \to R/J(R) \times \text{End}(I/IJ(R))
\]

is a local morphism, so that its kernel \(K/I \cap L/I\) is contained in \(J(E/I)\). In particular, when \(K \subseteq L\), we have that \(L/I = J(E/I)\) as we have seen in Theorem 2.1(4)(a). We are not able to describe \(J(E/I)\) when \(K\) and \(K\) are not comparable.

2.3. Remark. Let \(R\) be a local right self-injective ring. Let \(M_R\) be a cyclic and finitely presented module of projective dimension \(\leq 1\). Since \(R_R\) is injective, we have that \(\text{Ext}_R^1(M_R, R_R) = 0\). Thus, Theorem 2.1 can be applied.

Let \(A\) and \(B\) be two modules. We say that:

- \(A\) and \(B\) have the same monogeny class, and write \([A]_m = [B]_m\), if there exist a monomorphism \(A \to B\) and a monomorphism \(B \to A\) [5];
• A and B have the same epigeny class, and write $[A]_{ek} = [B]_{ek}$, if there exist an
epimorphism $A \to B$ and an epimorphism $B \to A$;

It is clear that a module A has the same monogeny (epigeny) class as the zero module
if and only if $A = 0$.

• Two cyclically presented modules R/aR and R/bR over a local ring R are said to
have the same lower part, denoted $[R/aR]_{l} = [R/bR]_{l}$, if there exist $r, s \in R$ such that
$raR = bR$ and $sbR = aR$ [1].

• If M_{R} and M'_{R} are two couniformly presented modules with couniform presenta-
tions

$$0 \to C_{R} \to P_{R} \to M_{R} \to 0$$

and

$$0 \to C'_{R} \to P'_{R} \to M'_{R} \to 0,$$

we say that M_{R} and M'_{R} have the same lower part, and we write $[M_{R}]_{l} = [M'_{R}]_{l}$, if there are two homomorphisms $f_{0} : P_{R} \to P'_{R}$ and $f'_{0} : P'_{R} \to P_{R}$ such that $f_{0}(C_{R}) = C'_{R}$ and$f'_{0}(C'_{R}) = C_{R}$ [7].

2.4. Theorem. Let R be a semiperfect ring and let R_{R}/L be a cyclic uniform right
R-module with $L \neq 0$. Let E be the idealizer of the right ideal L of R, that is, the set of
all $r \in R$ with $rL \subseteq L$, so that

$$\text{End}(R_{R}/L) \cong E/L.$$

Similarly, let E' be the idealizer of the right ideal $L + J(R)$ of R, so that

$$\text{End}(R_{R}/(L + J(R))) \cong E'/((L + J(R)).$$

Set $I := \{e \in E \mid \text{left multiplication by } e + I \text{ is a non-injective endomorphism of } R_{R}/L\}$
and $K := E \cap L + J(R)$. Then:

1. I and K are two two-sided ideals of E containing L, and I is completely prime
in E.
2. For every $e \in E$, the element $e + L$ of E/L is invertible in E/L if and only if
$e + L + J(R)$ is invertible in $E'/L + J(R)$ and $e \notin I$.
3. Moreover:
 (a) If $I \subset K$, then every epimorphism $R_{R}/L \to R_{R}/L$ is an automorphism of
R_{R}/L.
 (b) $K \subset I$ if and only if $[R_{R}/L]_{m} = [L + J(R)/L]_{m}$.

Proof. (1) We know that $\text{End}(R_{R}/L) \cong E/L$. Every endomorphism $e + L$ of R_{R}/L ex-
tends to an endomorphism e_{1} of the injective envelope $E(R_{R}/L)$. Define a ring morphism

$$\varphi : E \to \text{End}(E(R_{R}/L))/J(\text{End}(E(R_{R}/L)))$$

by $\varphi(e) = e_{1} + J(\text{End}(E(R_{R}/L)))$ for every $e \in E$. Since R_{R}/L is uniform, the injective
envelope $E(R_{R}/L)$ is indecomposable, the endomorphism ring $\text{End}(E(R_{R}/L))$ is a local
ring, and the Jacobson radical $J(\text{End}(E(R_{R}/L)))$ consists of all non-injective endomor-
phisms of $E(R_{R}/L)$. It follows that I, which is equal to the kernel of the ring morphism
φ, whose range is the division ring

$$\text{End}(E(R_{R}/L))/J(\text{End}(E(R_{R}/L))),$$

must be a completely prime two-sided ideal of E. The remaining part of statement (1)
is easily checked.

(2) We have already seen that there is a ring morphism

$$\varphi : E \to \text{End}(E(R_{R}/L))/J(\text{End}(E(R_{R}/L)))$$
whose kernel is I. Hence if $e \in E$ and $e + L$ is invertible in E/L, then $\varphi(e)$ must be invertible in the division ring $\text{End}(E(R_R/L))/J(\text{End}(E(R_R/L)))$. Thus $\varphi(e) \neq 0$, that is, $e \notin \ker \varphi = I$. Similarly, we can consider the ring morphism

$$
\psi: E \to \text{End}(R_R/L + J(R))
$$

defined by $\psi(e)(r + L + J(R)) = er + L + J(R)$ for every $e \in E$ and every $r \in R$. Its kernel is K, which contains L. Hence $e + L$ invertible in E/L implies $\psi(e)$ invertible in $\text{End}(R_R/L + J(R))$. But

$$
\text{End}(R_R/(L + J(R))) \cong E'/(L + J(R)),
$$

so that $e + L + J(R)$ must be invertible in $E'/L + J(R)$.

Conversely, assume $e \in E$, $e + L + J(R)$ invertible in $E'/L + J(R)$ and $e \notin I$. We want to show that $e + L$ is invertible in E/L. Since $E/L \cong \text{End}(R_R/L)$, this is equivalent to showing that left multiplication $\mu_e: R_R/L \to R_R/L$ by e is an automorphism of R_R/L. Now $e \notin I$ is equivalent to μ_e is injective by definition of I. In order to show that μ_e is onto as well, it suffices to prove that μ_e induces an onto endomorphism

$$(R_R/L)/(R_R/L)J(R) \to (R_R/L)/(R_R/L)J(R)$$

by Nakayama’s Lemma. But $(R_R/L)J(R) = L + J(R)/L$, so that

$$(R_R/L)/(R_R/L)J(R) \cong R_R/L + J(R).$$

Hence $e + L + J(R)$ invertible in $E'/L + J(R)$ means that $\text{End}(E(R_R/L)J(R))$ means that the endomorphism $\psi(e)$ of $R_R/L + J(R)$ induced by μ_e is onto, as desired.

(3) (a) Assume $I \subseteq K$. Let $e + L: R_R/L \to R_R/L$ be an epimorphism with $e \in E$. Then the induced morphism $\psi(e): R_R/L + J(R) \to R_R/L + J(R)$ is also an epimorphism, so that it is an automorphism because $R_R/L + J(R)$ is a semisimple module of finite Goldie dimension. In the isomorphism

$$
\text{End}(R_R/(L + J(R))) \cong E'/(L + J(R)),
$$

we obtain that $e + L + J(R)$ is invertible in the ring $E'/L + J(R))$. Thus $e \notin K$. Hence $e \notin I$. It follows from (2) that $e + L$ is invertible, that is, it is an automorphism of R_R/L.

(b) Assume $K \not\subseteq I$. Then there is an element $f \in K$, $f \notin I$. Thus $f \in E$ induces an endomorphism f of R_R/L. Now $f \notin I$ means that f is injective, and $f \in K$ means that the image of f is contained in $L + J(R)/L$. Hence $[R_R/L]_m = [L + J(R)/L]_m$. Conversely, if $[R_R/L]_m = [L + J(R)/L]_m$, then there is a monomorphism $f: R_R/L \to L + J(R)/L$. If we compose it with the inclusion $L + J(R)/L \to R_R/L$ we get an endomorphism of R_R/L which is in K but not in I. Hence $K \not\subseteq I$. \hfill \Box

We finish this study with the following result.

2.5. Theorem. Let R be a semiperfect ring, let $R/L, R/L'$ be two cyclic uniform modules with $L \neq 0$ and $L' \neq 0$ proper right ideals of R. Assume that either

1. every monomorphism $R_R/L \to R_R/L$ is an automorphism of R_R/L, or
2. every epimorphism $R_R/L \to R_R/L$ is an automorphism of R_R/L, or
3. $[R_R/L]_m = [L + J(R)/L]_m$.

Then the followings are equivalent.

(a) $R_R/L \cong R_R/L'$
(b) $[R_R/L]_m = [R_R/L']_m$ and $[R_R/L]_c = [R_R/L']_c$.

Proof. Assume $[R_R/L]_m = [R_R/L']_m$ and $[R_R/L]_c = [R_R/L']_c$. Then there are monomorphisms $\alpha: R_R/L \to R_R/L'$ and $\beta: R_R/L' \to R_R/L$ and epimorphisms $\alpha: R_R/L \to R_R/L'$ and $\beta: R_R/L' \to R_R/L$. Then $\beta\alpha$ is a monomorphism $R_R/L \to R_R/L$ and $\beta\alpha'$ is an epimorphism $R_R/L \to R_R/L$. If hypothesis (a) holds, then $\beta\alpha$ is an automorphism
of R_R/L that factors through R_R/L', so that R_R/L is isomorphic to a direct summand of R_R/L'. But $R_R/L \neq 0$ and R_R/L' is uniform, so that $R_R/L \cong R_R/L'$. This proves our theorem under hypothesis (a). Dually one proves that the theorem holds when hypothesis (b) holds.

Assume now that hypothesis (c) holds, i.e., $[R_R/L]_m = [L + J(R)/L]_m$. Equivalently, there exists a monomorphism $\gamma: R_R/L \to R_R/L$ whose image is contained in $L + J(R)/L$. Now if either α or α' are isomorphisms, then the existence of α or α' shows that $R_R/L \cong R_R/L'$. This allows us to conclude. Thus we can assume that α is not an epimorphism and α' is not a monomorphism. Then $\alpha' + \alpha\gamma: R_R/L \to R_R/L'$ is an isomorphism, because:

1. It is injective, because it is the sum of the injective morphism $\alpha\gamma: R_R/L \to R_R/L'$ and the non-injective morphism $\alpha': R_R/L \to R_R/L'$, and R_R/L is uniform.

2. The ideal $J(R)$ is superfluous in R_R by Nakayama’s Lemma. Considering the canonical projection $R_R \to R_R/L$, it follows that $L + J(R)/L$ is superfluous in R_R/L. Applying the morphism $\alpha: R/L \to R/L'$, we get that the image of $\alpha\gamma$ is contained in $\alpha(L + J(R)/L)$, hence is a superfluous submodule of R/L'. Thus the sum of $\alpha\gamma$ and the surjective morphism $\alpha': R/L \to R/L'$ is a surjective morphism $\alpha' + \alpha\gamma: R_R/L \to R_R/L'$.

Thus $\alpha + \alpha\gamma$ is an isomorphism of R_R/L onto R_R/L'.

2.6. Remark. By Theorem 2.4, the only case in which we cannot apply Theorem 2.5 is when I is properly contained in I. Namely, if $K \not\subseteq I$, then $[R_R/L]_m = [L + J(R)/L]_m$ and we can apply Theorem 2.5(a); if $K \subseteq I$, then either K is properly contained in I, which is the case still unknown, or $K = I$, but in the latter case every epimorphism $R_R/L \to R_R/L$ is an automorphism of R_R/L by Theorem 2.4(1).

Acknowledgments. The authors are grateful to the referee for drawing our attention to a number of typos. Also it is a pleasure to thank Prof. A. Facchini for his helpful comments.

References

