A NOTE ON CERTAIN CENTRAL DIFFERENTIAL IDENTITIES WITH GENERALIZED DERIVATIONS

Nurcan Argaç and Vincenzo De Filippis

Received 01 : 04 : 2011 : Accepted 13 : 01 : 2012

Abstract

Let R be a noncommutative prime ring of characteristic different from 2 with right Utumi quotient ring U and extended centroid C, I a nonzero right ideal of R. Let $f(x_1,\ldots,x_n)$ be a non-central multilinear polynomial over C, $m \geq 1$ a fixed integer, a a fixed element of R, G a non-zero generalized derivation of R. If $aG(f(r_1,\ldots,r_n))^m \in Z(R)$ for all $r_1,\ldots,r_n \in I$, then one of the following holds:

1. $aI = aG(I) = (0)$;
2. $G(x) = qx$, for some $q \in U$ and $aqI = 0$;
3. $[f(x_1,\ldots,x_n),x_1]x_{n+2}$ is an identity for I;
4. $G(x) = cx + [q,x]$ for all $x \in R$, where $c,q \in U$ such that $cI = 0$ and $[g,I]I = 0$;
5. dim$_C(RC) \leq 4$;
6. $G(x) = \alpha x$, for some $\alpha \in C$; moreover $a \in C$ and $f(x_1,\ldots,x_n)^m$ is central valued on R.

Keywords: Prime rings, Differential identities, Generalized derivations.

2000 AMS Classification: 16 N 60, 16 W 25, 47 B 47, 47 B 48.

*Department of Mathematics, Ege University, Science Faculty, 35100 Bornova, Izmir, Turkey. E-mail: nurcan.argac@ege.edu.tr
†Corresponding Author.
‡DI.S.I.A., Faculty of Engineering, University of Messina, 98166, Messina, Italy. E-mail: defilippis@unime.it
1. Introduction and Preliminaries

Throughout this paper unless specially stated, \(R \) always denotes a prime ring with center \(Z(R) \), \(U \) its right Utumi quotient ring and \(C \) its extended centroid (which is the center of \(U \)). The definitions, the axiomatic formulations and the properties of this quotient ring \(U \) can be found in [1]. In any case, when \(R \) is a prime ring, all that we need about \(U \) is that:

1. \(R \subset U \);
2. \(U \) is a prime ring with identity;
3. The center of \(U \), denoted by \(C \), is a field which is called the extended centroid of \(R \).

By a derivation of \(R \) we mean that an additive map \(d \) from \(R \) into itself satisfies the rule \(d(xy) = d(x)y + xd(y) \) for all \(x, y \in R \). For any \(x, y \in R \), the symbol \([x, y]\) stands for the commutator \(xy - yx \). For \(b \in U \), we use \(\text{ad}(b) \) to denote the inner derivation induced by \(b \); that is, \(\text{ad}(b)(x) = [b, x] \) for \(x \in R \). An additive mapping \(g : R \rightarrow R \) is called a generalized derivation of \(R \) if there exists a derivation \(d \) of \(R \) such that \(g(xy) = g(x)y + xd(y) \) for all \(x, y \in R \) [8]. Obviously any derivation is a generalized derivation. Moreover, other basic examples of generalized derivations are the following: (i) \(g(x) = ax + xb \), for \(a, b \in R \); (ii) \(g(x) = ax \), for some \(a \in R \). Many authors have studied generalized derivations in the context of prime and semiprime rings (see [8, 11, 16]).

In [2] M. Bresar proved that if \(R \) is a semiprime ring, \(d \) a nonzero derivation of \(R \) and \(a \in R \) such that \(\text{ad}(x)^m = 0 \), for all \(x \in R \), where \(m \) is a fixed integer, then \(\text{ad}(R) = 0 \) when \(R \) is \((m-1)!\)-torsion free. In [15] T.K. Lee and J.S. Lin proved Bresar’s result without the \((m-1)!\)-torsion free assumption on \(R \). They studied the Lie ideal case and, for the prime case, they showed that if \(R \) is a prime ring with a derivation \(d \neq 0 \), \(L \) is an ideal of \(R \), \(a \in R \) such that \(\text{ad}(u)^m = 0 \), for all \(u \in L \), where \(m \) is fixed, then \(\text{ad}(L) = 0 \) unless the case when \(\text{char}(R) = 2 \) and \(\dim_C RC = 4 \). In addition, if \([L, L] \neq 0 \), then \(\text{ad}(R) = 0 \).

In [4] C.M. Chang and T.K. Lee established a unified version of the previous results for prime rings. More precisely they proved the following theorem: let \(R \) be a prime ring, \(\varphi \) a nonzero right ideal of \(R \), \(d \) a nonzero derivation of \(R \), \(a \in R \) such that \(\text{ad}(\varphi)^m = 0 \), \(\varphi \in Z(R) \) \((d(\varphi))^{m-1}a \in Z(R)\). If \([\varphi, \varphi]_\varphi \neq 0 \) and \(\dim_C RC > 4 \), then either \(\text{ad}(\varphi) = 0 \) \((a = 0 \) resp.) or \(d \) is the inner derivation induced by some \(q \in U \) such that \(qq = 0 \).

Recently in the first part of [3], C.M. Chang generalized above results by proving that if \(R \) is a prime ring with extended centroid \(C \), \(I \) a non-zero right ideal of \(R \), \(d \) a non-zero derivation of \(R \), \(f(x_1, \ldots, x_n) \) a multilinear polynomial over \(C \), \(a \in R \) and \(m \geq 1 \) a fixed integer such that \(\text{ad}(f(r_1, \ldots, r_n))^m = 0 \) for all \(r_1, \ldots, r_n \in I \), then either \(aI = d(I)I = 0 \) or \([f(x_1, \ldots, x_n), x_{n+1}]x_{n+2} \) is an identity for \(I \).

In [7] the second author obtained some results under the assumption that \(I \) is a nonzero right ideal of a noncommutative prime ring \(R \), \(G \) is a generalized derivation of \(R \), \(m \) is a fixed positive integer, \(f(x_1, \ldots, x_n) \) is a non-central multilinear polynomial over \(C \) such that \(aG(f(r_1, \ldots, r_n))^m = 0 \) for all \(r_1, \ldots, r_n \in I \). In this case one of the following holds:

1. \(aI = aG(I) = 0 \);
2. \(G(x) = qx \), for some \(q \in U \) and \(aqI = 0 \);
3. \([f(x_1, \ldots, x_n), x_{n+1}]x_{n+2} \) is an identity for \(I \);
4. \(G(x) = cx + [q, x] \) for all \(x \in R \), where \(c, q \in U \) such that \(cI = 0 \) and \([q, I]I = 0 \).

Motivated by the above results we will prove:

1.1. Theorem. Let \(R \) be a noncommutative prime ring of characteristic different from 2 with right Utumi quotient ring \(U \) and extended centroid \(C \), \(I \) a nonzero right ideal of \(R \).
Let \(f(x_1, \ldots, x_n) \) be a non-central multilinear polynomial over \(C \), \(m \geq 1 \) a fixed integer, \(a \) a fixed element of \(R \), \(G \) a non-zero generalized derivation of \(R \). If \(aG(f(r_1, \ldots, r_n))^m \in Z(R) \) for all \(r_1, \ldots, r_n \in I \), then one of the following holds:

1. \(aI = aG(I) = \{0\} \);
2. \(G(x) = qx \) for some \(q \in U \) and \(aqI = 0 \);
3. \([f(x_1, \ldots, x_n), x_{n+1}]_{x_{n+2}}\) is an identity for \(I \);
4. \(G(x) = cx + [q, x] \) for all \(x \in R \), where \(c, q \in U \) such that \(cI = 0 \) and \([q, I]I = 0\);
5. \(\dim_C(\mathcal{R}C) \leq 4 \);
6. \(G(x) = \alpha x \), for some \(\alpha \in C \); moreover \(a \in C \) and \(f(x_1, \ldots, x_n)^m \) is central valued on \(R \).

In order to prove our Theorem we will use frequently the theory of generalized polynomial identities and differential identities (see [1, 9, 13, 17]). In particular we need to recall the following:

1.2. Remark. In [11], T.K. Lee proved that every generalized derivation \(G \) of \(R \) can be uniquely extended to a generalized derivation of \(U \). In particular, there exists \(a \in U \) and a derivation \(d \) of \(U \) such that \(G(x) = ax + d(x) \) for all \(x \in U \) [11, Theorem 3].

1.3. Remark. We need to recall the following notation:

\[
f(x_1, \ldots, x_n) = x_1x_2 \cdot \ldots \cdot x_n + \sum_{\sigma \in S_n, \sigma \neq 1} \alpha_{\sigma}x_{\sigma(1)} \ldots x_{\sigma(n)}
\]

for some \(\alpha_{\sigma} \in C \) and we denote by \(f^d(x_1, \ldots, x_n) \) the polynomial obtained from \(f(x_1, \ldots, x_n) \) by replacing each coefficient \(\alpha_{\sigma} \) with \(d(\alpha_{\sigma} \cdot 1) \). Thus, for \(d \) a usual derivation, we write \(d(f(r_1, \ldots, r_n)) = f^d(r_1, \ldots, r_n) + \sum_i f(r_1, \ldots, d(r_i), \ldots, r_n) \), for all \(r_1, \ldots, r_n \in R \).

Finally we also recall the following:

1.4. Definition. By a differential polynomial \(f(d_i(x_i)) \) over \(U \) we mean a generalized polynomial with coefficients in \(U \) and with variables acted on by derivation words, that is, \(f(z_{ij}) \) is a generalized polynomial in variables \(z_{ij} \) and with coefficients in \(U \), and each \(d_i \) is either a derivation word or the identity map of \(R \).

In particular in this note we consider the differential polynomial

\[
f(x_1, \ldots, x_n, d(x_1), \ldots, d(x_n)),
\]

that is, we will consider the case when a derivation \(d \) and the identity map act on the variables.

We say that the differential polynomial \(f(d_i(x_i)) \) is a **central differential identity** (central DI) for a right ideal \(\mathfrak{g} \) of \(R \) if \(f(z_{ij}) \) has no constant term and \(f(d_i(r_i)) \in \mathfrak{g} \) for all \(r_1, \ldots, r_n \in \mathfrak{g} \), but there exist \(s_1, \ldots, s_n \in \mathfrak{g} \) such that \(f(d_i(s_i)) \neq 0 \) (for more details we refer the reader to [4]).

Proof. Firstly we prove Theorem 1.1. We consider \(G(x) = cx + d(x) \), for some \(c \in U \) and a derivation \(d \) on \(U \). If \(aG(f(r_1, \ldots, r_n))^m = 0 \) for all \(r_1, \ldots, r_n \in I \), the result follows from [7]. Hence we suppose there exist \(s_1, \ldots, s_n \in I \) such that \(aG(f(s_1, \ldots, s_n))^m \neq 0 \). Therefore \(aG(f(x_1, \ldots, x_n))^m \in Z(R) \) is a central DI for \(I \), then by [4, Theorem 1], \(R \) is a PI-ring. Thus by Posner’s Theorem (see for example [18, Theorem 1.7.9]), \(RC \) is a finite-dimensional central simple algebra over \(C \) and \(RC \cong M_k(F) \), the ring of \(k \times k \) matrices over \(F \), for some integer \(k \) and some finite-dimensional central division algebra \(F \) over \(C \). We note that in this case \(a \) is invertible, therefore \(aG(f(x_1, \ldots, x_n))^m \in Z(R) \) if and only if \(G(f(x_1, \ldots, x_n))^m a \in Z(R) \). By [13, Theorem 2], \(G(f(r_1, \ldots, r_n))^m a \in C \).
for all \(r_1, \ldots, r_n \in IC \). In order to prove our result we may replace \(R \) with \(RC \) and \(I \) with \(IC \), so that we assume without loss of generality that \(R \cong M_k(F) \). Since \(I \) satisfies
\[
\left(cf(x_1, \ldots, x_n) + f^d(x_1, \ldots, x_n) + \sum_{i=1}^{n} f(x_1, \ldots, d(x_i), \ldots, x_n) \right)^m a \in C,
\]
then for all \(y \in R, I \) also satisfies
\[
\left(cf(x_1y, \ldots, x_n) + f^d(x_1y, \ldots, x_n) + f(d(x_1)y + x_1d(y), x_2, \ldots, x_n) + \sum_{i=2}^{n} f(x_1y, \ldots, d(x_i), \ldots, x_n) \right)^m a \in C.
\]

In the light of Kharchenko’s theory [9], we divide the proof into two cases:

If the derivation \(d \) is not inner, \(I \) satisfies
\[
\left(cf(x_1y, \ldots, x_n) + f^d(x_1y, \ldots, x_n) + f(d(x_1)y + x_1z, x_2, \ldots, x_n) + \sum_{i=2}^{n} f(x_1y, \ldots, d(x_i), \ldots, x_n) \right)^m a \in C,
\]
where the variable \(z \) falls in \(R \). In particular, for \(y = 0 \), \(I \) satisfies \(f(x_1z, \ldots, x_n)^m a \in C \) for all \(z \in R \), that is, \(I \) satisfies \(f(x_1, \ldots, x_n)^m a \in C \).

In case there are \(x_1, \ldots, x_n \in I \) such that \(f(x_1, \ldots, x_n)^m a \neq 0 \), then by [14, Theorem 1], \(f(x_1, \ldots, x_n)^m \) is central valued on \(R \) and also \(a \in C \). Thus \(I = R \) and \(G(f(x_1, \ldots, x_n))^m \) is central valued on \(R \). Hence, by [19], either \(f(x_1, \ldots, x_n) \) is central valued on \(R \), or \(R \) satisfies \(s_4 \) the standard identity of degree 4, or there exists \(a \in C \) such that \(G(x) = ax \).

In any case we are done.

On the other hand, if \(I \) satisfies \(f(x_1, \ldots, x_n)^m a \). Then, by [6] we get the conclusion that either \(a = 0 \) or \(f(x_1, \ldots, x_n)x_{n+1} \) is an identity for \(I \).

Let now \(d \) be the inner derivation induced by \(q \in U \), namely \(d(x) = [q, x] \), then we have \(G(x) = (c + q)x - xq \). In this case \(I \) satisfies
\[
\left((c + q)f(x_1, \ldots, x_n) + f(x_1, \ldots, x_n)(-q) \right)^m a \in C.
\]

Denote by \(K \) the algebraic closure of \(F \) if \(F \) is infinite, otherwise let \(K = F \). Then \(M_k(F) \otimes_C K \cong M_l(K) \) for some \(l \geq 2 \). By [12, Lemma 2] and [10, Proposition], it follows that \(((c + q)f(r_1, \ldots, r_n) + f(r_1, \ldots, r_n)(-q))^m a \in Z(M_l(K)) \) for all \(r_1, \ldots, r_n \in IC \otimes_C K \). Also in this case we assume, without loss of generality, that \(R = M_l(K) \) and \(I = \sum_{i=1}^{l} e_i R \), where \(t \leq l \).

If \(l = 2 \) we are done, thus we suppose that \(l \geq 3 \). By [3, Lemma 3], if \(f(x_1, \ldots, x_n), x_{n+1}x_{n+2} \) is not an identity for \(I \), then for all \(\alpha \in F, i \leq l \) and \(j \neq i \) there exist \(r_1, \ldots, r_n \in R \) such that \(f(r_1, \ldots, r_n) = \alpha e_{ij} \). Without loss of generality we may consider \(f(r_1, \ldots, r_n) = e_{ij} \). Therefore \(((c + q)e_{ij} + e_{ij}(-q))^m a \in Z(M_l(K))\). Since \(((c + q)e_{ij} + e_{ij}(-q))^m a \) has rank \(\leq 2 \), then it is zero in \(M_l(K) \), hence \(((c + q)e_{ij} + e_{ij}(-q))^m = 0 \), since \(a \) is invertible. This means both \(e_{ij}((c + q)e_{ij} + e_{ij}(-q))^m = 0 \) and \(((c + q)e_{ij} + e_{ij}(-q))^m = 0 \). Therefore the \((j, i)\)-entries of the matrices \(c \) and \(a \) are zero, so that \(qI \subseteq I \) and \(cI \subseteq I \). This means that \(G(I) \subseteq I \) and so \(G(f(r_1, \ldots, r_n))^m a \in I \cap K \), for all \(r_1, \ldots, r_n \in I \), implies \(I = R = M_l(K) \). Therefore \(R \) satisfies (1).

In the light of this, we may repeat the previous argument, for any \(i \neq j \) and with no assumption on \(i \) and \(j \). There are \(r_1, \ldots, r_n \in R \) such that \(f(r_1, \ldots, r_n) = e_{ij} \) and \(((c + q)e_{ij} + e_{ij}(-q))^m a \in Z(M_l(K))\). As above we have that \(((c + q)e_{ij} + e_{ij}(-q))^m = 0 \). Since it holds for all \(i \neq j \), it follows that both \(c \) and \(q \) are diagonal matrices in \(R \) and a standard argument shows that both \(c \) and \(q \) are central matrices in \(R \). Thus \(G(x) = cx \).
for \(c \in C \), and \((c^m)af(x_1, \ldots, x_n)_m \in C \) is satisfied by \(R \). Consider the following subset of \(R \):

\[
A = \{ x \in R : x f(r_1, \ldots, r_n)_m \in C, \ \forall r_1, \ldots, r_n \in R \}.
\]

Of course \(A \) is a subgroup of \(R \) which is invariant under the action of all the inner \(K \)-automorphisms. By \([5]\) either \(A \subseteq Z(R) \) or \([R, R] \subseteq A \). In the first case \(a \in Z(R) \) and \(f(x_1, \ldots, x_n)_m \) is central valued on \(R \). In the second one, for all \(i \neq j \), \(e_{ij} f(x_1, \ldots, x_n)_m \in Z(R) \). By commuting this last with \(e_{ij} \) we get

\[
0 = [e_{ij} f(r_1, \ldots, r_n)_m, e_{ij}] = e_{ij} f(r_1, \ldots, r_n)_m e_{ij},
\]

for all \(r_1, \ldots, r_n \in R \). This means that \(f(r_1, \ldots, r_n)_m \) is a diagonal matrix on \(R \), and as above we obtain that \(f(r_1, \ldots, r_n)_m \) is a central matrix, for all \(r_1, \ldots, r_n \in R \). As a consequence, once again \(a \in Z(R) \).

As a consequence of the previous theorem we also have the following:

1.5. Corollary. Let \(R \) be a noncommutative prime ring of characteristic different from 2 with right Utumi quotient ring \(U \) and extended centroid \(C \), \(I \) a nonzero right ideal of \(R \). Let \(m \geq 1 \) be a fixed integer, \(a \) a fixed element of \(R \), \(G \) a generalized derivation of \(R \). If \(a G(r)_m \in Z(R) \) for all \(r \in I \), then one of the following holds:

1. \(a I = a G(I) = (0) \);
2. \(G(x) = qx \), for some \(q \in U \) and \(a q I = 0 \);
3. \([x_1, x_2]_{x_3} \) is an identity for \(I \);
4. \(G(x) = cx + [q, x] \) for all \(x \in R \), where \(c, q \in U \) such that \(c I = 0 \) and \([q, I] I = 0 \);
5. \(\dim C(RC) \leq 4 \).

We would like to conclude this note with the following results, which are easy reductions of the previous ones:

1.6. Corollary. Let \(R \) be a noncommutative prime ring of characteristic different from 2 with right Utumi quotient ring \(U \) and extended centroid \(C \), \(I \) a non-zero two-sided ideal of \(R \). Let \(f(x_1, \ldots, x_n) \) be a non-central multilinear polynomial over \(C \), \(m \geq 1 \) a fixed integer, \(a \) a non-zero fixed element of \(R \), \(G \) a non-zero generalized derivation of \(R \). If \(a G(f(r_1, \ldots, r_n))_m \in Z(R) \) for all \(r_1, \ldots, r_n \in I \), then one of the following holds:

1. \(G(x) = qx \), for some \(q \in U \) and \(a q I = 0 \);
2. \(R \) satisfies \(s_4 \), the standard identity of degree 4;
3. \(G(x) = cx + [q, x] \) for some \(c \in C \); moreover \(a \in C \) and \(f(x_1, \ldots, x_n)_m \) is central valued on \(R \).

1.7. Corollary. Let \(R \) be a noncommutative prime ring of characteristic different from 2 with right Utumi quotient ring \(U \) and extended centroid \(C \), \(I \) a non-zero two-sided ideal of \(R \). Let \(m \geq 1 \) be a fixed integer, \(a \) a non-zero fixed element of \(R \), \(G \) a non-zero generalized derivation of \(R \). If \(a G(r)_m \in Z(R) \) for all \(r \in I \), then one of the following holds:

1. \(G(x) = qx \), for some \(q \in U \) and \(a q I = 0 \);
2. \(R \) satisfies \(s_4 \), the standard identity of degree 4.

References

