ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

Zhi-Gang Wang*† and Da-Zhao Chen‡

Received 26:03:2007 : Accepted 26:03:2009

Abstract

In this paper, we introduce a new subclass $K_s(\lambda, A, B)$ of close-to-convex functions. Such results as inclusion relationships, coefficient estimates, distortion and covering theorems for this class are proved. The results presented here would provide extensions of those given in earlier works. Several other new results are also obtained.

Keywords: Analytic functions, Starlike functions, Close-to-convex functions, Hadamard product (or convolution), Subordination between analytic functions.

2000 AMS Classification: 30 C 45.

1. Introduction

Let S denote the class of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic and univalent in the open unit disk

$$U := \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}.$$

Let K and $S^\ast(\alpha)$ denote the usual subclasses of S whose members are close-to-convex and starlike of order α ($0 \leq \alpha < 1$) in U, respectively.

In a recent paper, Gao and Zhou [1] discussed a class K_s of analytic functions related to the starlike functions, a function $f \in S$ is said to be in the class K_s if it satisfies the inequality:

$$\Re \left(\frac{z^2 f(z)}{g(z)g(-z)} \right) < 0 \quad (z \in U),$$

where $g(z)$ is an analytic function in U with $g(z) \neq 0$.

*School of Mathematics and Computing Science, Changsha University of Science and Technology, Yuntang Campus, Changsha 410114, Hunan, P. R. China. E-mail: zhigwang@163.com
†Corresponding author
‡Department of Mathematics, Shaoyang University, Shaoyang, 422000 Hunan, P. R. China. E-mail: chendazhao27@sina.com.cn