ON OPERATORS OF STRONG TYPE B

Safak Alpay*

Received 17:06:2011 : Accepted 21:03:2012

Abstract
We discuss operators of strong type B between a Banach lattice and a Banach space and give necessary and sufficient conditions for this class of operators to coincide with weakly compact operators.

Keywords: Operators of strong type B, b-weakly compact operators, Banach lattice.

2000 AMS Classification: 46 A 40, 46 B 40, 46 B 42.

1. Introduction
A vector lattice \(E \) is an ordered vector space for which \(\text{sup}\{x, y\} \) exists for every pair of vectors \(x, y \) in \(E \). Let \(E \) be a vector lattice. For \(x, y \in E \) with \(x \leq y \) in \(E \), the set \([x, y] = \{ t \in E : x \leq t \leq y \} \) is called an order interval. A subset of \(E \) is called order bounded if it is contained in some order interval. A Banach lattice \(E \) is a Banach space \((E, || \cdot ||)\) where \(E \) is also a vector lattice and its norm satisfies the following property: For each \(x, y \in E \) with \(|x| \leq |y| \), we have \(||x|| \leq ||y|| \). If \(E \) is a Banach lattice, its topological dual \(E' \) equipped with the dual norm and order is also a Banach lattice. A norm \(|| \cdot || \) on a Banach lattice \(E \) is called order continuous if for each net \((x_\alpha)\) with \(x_\alpha \downarrow 0 \) in \(E \), \((x_\alpha) \) converges to zero for the norm \(|| \cdot || \), where \((x_\alpha) \downarrow 0 \) means that \((x_\alpha) \) is decreasing, its infimum exists and is equal to zero.

A Banach lattice \(E \) is said to be a KB-space whenever every increasing norm bounded sequence in \(E_+ = \{ x \in E : 0 \leq x \} \) is norm convergent. Each KB-space has order continuous norm, but a Banach lattice with an order continuous norm is not necessarily a KB-space. Indeed, the Banach lattice \(c_0 \) has order continuous norm but it is not a KB-space. However, if \(E \) is a Banach lattice, the topological dual is a KB-space if and only if its norm is order continuous. A Banach lattice \(E \) is an abstract M-space (AM-space in short) if for each \(x, y \in E \) with \(\inf\{x, y\} = 0 \), we have \(||x + y|| = \max\{||x||, ||y||\} \). A Banach lattice \(E \) is an AL-space if its dual \(E' \) is an AM-space.

We will use the term operator to mean a bounded linear mapping. The space of bounded linear operators between Banach spaces \(E, F \) will be denoted by \(L(E, F) \). All vector lattices considered in this note are assumed to have separating order duals. We refer the reader to [1] and [18] for further terminology and notation.

*Department of Mathematics, Middle East Technical University, Ankara, Turkey.
e-Mail: safak@metu.edu.tr