On star-K-Menger spaces

Yan-Kui Song *

Received 01 : 09 : 2012 : Accepted 26 : 09 : 2013

Abstract
A space \(X\) is star-K-Menger if for each sequence \((U_n : n \in \mathbb{N})\) of open covers of \(X\) there exists a sequence \((K_n : n \in \mathbb{N})\) of compact subsets of \(X\) such that \(\{\text{St}(K_n, U_n) : n \in \mathbb{N}\}\) is an open cover of \(X\). In this paper, we investigate the relationship between star-K-Menger spaces and related spaces, and study topological properties of star-K-Menger spaces.

2000 AMS Classification: 54D20, 54C10

Keywords: Selection principles, star-Menger, strongly star-Menger, star-K-Menger, starcompact, star Lindelöf, strongly starcompact, strongly star Lindelöf

1. Introduction

By a space, we mean a topological space. We give definitions of terms which are used in this paper. Let \(\mathbb{N}\) denote the set of positive integers. Let \(X\) be a space and \(U\) a collection of subsets of \(X\). For \(A \subseteq X\), let \(\text{St}(A, U) = \bigcup\{U \in U : U \cap A \neq \emptyset\}\). As usual, we write \(\text{St}(x, U)\) instead of \(\text{St}(\{x\}, U)\).

Let \(A\) and \(B\) be collections of open covers of a space \(X\). Then the symbol \(S_1(A, B)\) denotes the selection hypothesis that for each sequence \((U_n : n \in \mathbb{N})\) of elements of \(A\) there exists a sequence \((V_n : n \in \mathbb{N})\) such that for each \(n \in \mathbb{N}\), \(V_n\) is a finite subset of \(U_n\) and \(\bigcup_{n \in \mathbb{N}} V_n\) is an element of \(B\) (see [3,8]).

Kočinac [4,5] introduced star selection hypothesis similar to the previous ones. Let \(A\) and \(B\) be collections of open covers of a space \(X\). Then:

(A) The symbol \(S_{*1}(A, B)\) denotes the selection hypothesis that for each sequence \((U_n : n \in \mathbb{N})\) of elements of \(A\) there exists a sequence \((V_n : n \in \mathbb{N})\) such that for each \(n \in \mathbb{N}\), \(V_n\) is a finite subset of \(U_n\) and \(\bigcup_{n \in \mathbb{N}} \{\text{St}(V, U_n) : V \in \mathcal{V}_n\}\) is an element of \(B\).
(B) The symbol $SS^*_\text{comp}(A, B)$ (or $SS^*_\text{fin}(A, B)$) denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of A there exists a sequence $(K_n : n \in \mathbb{N})$ of compact (resp., finite) subsets of X such that $\{St(K_n, \mathcal{U}_n) : n \in \mathbb{N}\} \in B$.

Let \mathcal{O} denote the collection of all open covers of X.

1. Definition. ([4,5]) A space X is said to be star-Menger if it satisfies the selection hypothesis $SS^*_\text{fin}(\mathcal{O}, \mathcal{O})$.

2. Definition. ([4,5]) A space X is said to be star-K-Menger (strongly star-Menger) if it satisfies the selection hypothesis $SS^*_\text{comp}(\mathcal{O}, \mathcal{O})$ (resp., $SS^*_\text{fin}(\mathcal{O}, \mathcal{O})$).

3. Definition. ([1,7]) A space X is said to be starcompact (star-Lindelöf) if for every open cover \mathcal{U} of X there exists a finite (resp., countable, respectively) $\mathcal{V} \subseteq \mathcal{U}$ such that $St(\cup \mathcal{V}, \mathcal{U}) = X$.

4. Definition. ([1,6,9]) A space X is said to be K-starcompact (strongly starcompact, strongly star-Lindelöf, star-L-Lindelöf) if for every open cover \mathcal{U} of X there exists a compact (resp., finite, countable, Lindelöf) subset F of X such that $St(F, \mathcal{U}) = X$.

From the definitions, it is clear that every K-starcompact space is star-K-Menger, every strongly star-Menger space is star-K-Menger and every star-K-Menger space is star-Menger. Since every σ-compact subset is Lindelöf, thus every star-K-Menger space is star-L-Lindelöf. But the converses do not hold (see Examples 2.1, 2.2, 2.3 and 2.4 below).

Kočinac [4,5] studied the star-Menger and related spaces. In this paper, our purpose is to investigate the relationship between star-K-Menger spaces and related spaces, and study topological properties of star-K-Menger spaces.

Throughout this paper, let ω denote the first infinite cardinal, ω_1 the first uncountable cardinal, c the cardinality of the set of all real numbers. For a cardinal κ, let κ^+ be the smallest cardinal greater than κ. For each pair of ordinals α, β with $\alpha < \beta$, we write $[\alpha, \beta) = \{ \gamma : \alpha \leq \gamma < \beta \}$, $(\alpha, \beta) = \{ \gamma : \alpha < \gamma \leq \beta \}$, $[\alpha, \beta] = \{ \gamma : \alpha \leq \gamma \leq \beta \}$ and $[\alpha, \beta) = \{ \gamma : \alpha \leq \gamma < \beta \}$. As usual, a cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. A cardinal is often viewed as a space with the usual order topology. Other terms and symbols that we do not define follow [2].

2. Star-K-Menger spaces and related spaces

In this section, we give some examples showing that the relationship between star-K-Menger spaces and other related spaces.

2.1. Example. There exists a Tychonoff star-K-Menger space X which is not K-starcompact.

Proof. Let $X = \omega$ be the countably infinite discrete space. Clearly, X is not K-starcompact. Since X is countable, the singleton sets can serve as the compact sets which witness that X is star-K-Menger, which completes the proof.

2.2. Example. There exists a Tychonoff star-K-Menger space which is not strongly star-Menger.

Proof. Let $D = \{d_\alpha : \alpha < c\}$ be a discrete space of cardinality c and let $aD = D \cup \{d^+\}$ be one-point comactification of D. Let

$$X = (aD \times [0, c^+)) \cup (D \times \{c^+\})$$

be the subspace of the product space $aD \times [0, c^+]$. Clearly, X is a Tychonoff space.
First we show that \(X \) is star-K-Menger; we only show that \(X \) is K-starcompact, since every K-starcompact space is star-K-Menger. To this end, let \(\mathcal{U} \) be an open cover of \(X \). For each \(\alpha < \eta \), there exists \(U_\alpha \in \mathcal{U} \) such that \(\langle d_\alpha, c^+ \rangle \subseteq U_\alpha \). For each \(\alpha < c \), we can find \(\beta_\alpha < c^+ \) such that \(\{d_\alpha \} \times \{\beta_\alpha, c^+ \} \subseteq U_\alpha \). Let \(\beta = \sup\{\beta_\alpha : \alpha < c\} \). Then \(\beta < c^+ \). Let \(K_1 = aD \times \{\beta\} \). Then \(K_1 \) is compact and \(U_\alpha \cap K_1 \neq \emptyset \) for each \(\alpha < c \). Hence \[
D \times \{c^+\} \subseteq St(K_1, \mathcal{U}).
\]
On the other hand, since \(aD \times [0, c^+] \) is countably compact and consequently \(aD \times [0, c^+] \) is strongly starcompact (see [1,6]), hence there exists a finite subset \(K_2 \) of \(aD \times [0, c^+] \) such that \(aD \times [0, c^+] \subseteq St(K_2, \mathcal{U}) \).

If we put \(K = K_1 \cup K_2 \). Then \(K \) is a compact subset of \(X \) such that \(X = St(K, \mathcal{U}) \), which shows that \(X \) is K-starcompact.

Next we show that \(X \) is not strongly star-Menger. We only show that \(X \) is not strongly star-Lindelöf, since every strongly star-Menger space is strongly star-Lindelöf. Let us consider the open cover \(\mathcal{U} = \{\{d_\alpha \} \times [0, c^+] : \alpha < c\} \cup \{aD \times [0, c^+]\} \)

of \(X \). It remains to show that \(St(F, \mathcal{U}) \neq X \) for any countable subset \(F \) of \(X \). To show this, let \(F \) any countable subset of \(X \). Then there exists \(\alpha_0 < c \) such that \(F \cap \{(d_{\alpha_0}) \times [0, c^+]\} = \emptyset \). Hence \(\langle d_{\alpha_0}, c^+ \rangle \notin St(F, \mathcal{U}) \), since \(\{d_{\alpha_0}\} \times [0, c^+] \) is the only element of \(\mathcal{U} \) containing the point \(\langle d_{\alpha_0}, c^+ \rangle \), which shows that \(X \) is not strongly star-Lindelöf.

\[\square \]

2.3. Example. There exists a Tychonoff star-L-Lindelöf space which is not star-K-Menger.

Proof. Let \(D = \{d_\alpha : \alpha < \eta\} \) be a discrete space of cardinality \(\eta \) and let \(bD = D \cup \{d^*\} \), where \(d^* \notin D \). We topologize \(bD \) as follows: for each \(\alpha < \eta \), \(\{d_\alpha\} \) is isolated and a set \(U \) containing \(d^* \) is open if and only if \(bD \setminus U \) is countable. Then \(bD \) is Lindelöf and every compact subset of \(bD \) is finite. Let \(X = (bD \times [0, \omega]) \setminus \{(d^*, \omega)\} \) be the subspace of the product space \(bD \times [0, \omega] \). Then \(X \) is star-L-Lindelöf, since \(bD \times \omega \) is a Lindelöf dense subset of \(X \).

Next we show that \(X \) is not star-K-Menger. For each \(\alpha < \eta \), let \(U_\alpha = \{d_\alpha\} \times [0, \omega] \). For each \(n \in \omega \), let \(V_n = bD \times \{n-1\} \). For each \(n \in \mathbb{N} \), let \(U_n = \{U_\alpha : \alpha < \eta\} \cup \{V_n : n \in \mathbb{N}\} \).

Then \(U_n \) is an open cover of \(X \). Let us consider the sequence \(\langle U_n : n \in \mathbb{N}\rangle \) of open covers of \(X \). It suffices to show that \(\bigcup_{n \in \mathbb{N}} St(K_n, U_n) \neq X \) for any sequence \(\langle K_n : n \in \mathbb{N}\rangle \) of compact subsets of \(X \). Let \(\langle K_n : n \in \mathbb{N}\rangle \) be any sequence of compact subsets of \(X \). For each \(n \in \mathbb{N} \), since \(K_n \) is compact and \(\{d_\alpha, \omega : \alpha < \eta\} \) is a discrete closed subset of \(X \), the set \(K_n \cap \{d_\alpha, \omega : \alpha < \eta\} \) is finite. Then there exists \(\alpha_n < \eta \) such that \(K_n \cap \{d_\alpha, \omega : \alpha > \alpha_n\} = \emptyset \).

Let \(\alpha' = \sup\{\alpha_n : n \in \mathbb{N}\} \). Then \(\alpha' < \eta \) and \[
\bigcup_{n \in \mathbb{N}} K_n \cap \{d_\alpha, \omega : \alpha > \alpha'\} = \emptyset.
\]

For each \(n \in \mathbb{N} \), since \(K_n \cap V_m \) is finite for each \(m \in \mathbb{N} \), there exists \(\alpha_{nm} < \eta \) such that \(K_n \cap \{d_\alpha, n : \alpha > \alpha_{nm}\} = \emptyset \).
Let \(\alpha' = \sup\{\alpha_n : n \in \mathbb{N}\} \). Then \(\alpha' < \omega \) and
\[
K_n \cap \{(d_\alpha, m) : \alpha > \alpha', m \in \mathbb{N}\} = \emptyset.
\]
Let \(\alpha'' = \sup\{\alpha_n' : n \in \mathbb{N}\} \). Then \(\alpha'' < \omega \) and
\[
(\bigcup_{n \in \mathbb{N}} K_n) \cap \{(d_\alpha, m) : \alpha > \alpha'', m \in \mathbb{N}\} = \emptyset.
\]
If we pick \(\beta > \max\{\alpha', \alpha''\} \). Then \(U_\beta \cap K_n = \emptyset \) for each \(n \in \mathbb{N} \). Hence \(\{d_\beta, \omega\} \notin St(K_n, U_\alpha) \) for each \(n \in \mathbb{N} \), since \(U_\beta \) is the only element of \(U_\alpha \) containing the point \(\{d_\beta, \omega\} \) for each \(n \in \mathbb{N} \), which shows that \(X \) is not star-K-Menger.

2.4. Example. There exists a \(T_1 \) star-Menger space which is not star-K-Menger.

Proof. Let \(X = [0, \omega_1) \cup D \), where \(D = \{d_\alpha : \alpha < \omega_1\} \) is a set of cardinality \(\omega_1 \). We topologize \(X \) as follows: \([0, \omega_1)\) has the usual order topology and is an open subspace of \(X \); a basic neighborhood of a point \(d_\alpha \in D \) takes the form
\[
O_\alpha(d_\alpha) = \{d_\alpha\} \cup (\beta, \omega_1), \text{ where } \beta < \omega_1.
\]
Then \(X \) is a \(T_1 \) space.

First we show that \(X \) is star-Menger. We only show that \(X \) is starcompact, since every starcompact space is star-Menger. To this end, let \(U \) be an open cover of \(X \). Without loss of generality, we can assume that \(U \) consists of basic open subsets of \(X \). Thus it is sufficient to show that there exists a finite subset \(V \) of \(U \) such that \(St(\bigcup V, U) = X \). Since \([0, \omega_1)\) is countably compact, it is strongly starcompact (see [1,6]), then we can find a finite subset \(V \) of \(U \) such that \([0, \omega_1) \subseteq St(\bigcup V, U) \). On the other hand, if we pick \(\alpha_0 < \omega_1 \), then there exists \(U_{\alpha_0} \in U \) such that \(d_{\alpha_0} \in U_{\alpha_0} \). For each \(\alpha < \omega_1 \), there is \(U_\alpha \in U \) such that \(d_\alpha \in U_\alpha \). Hence we have \(U_{\alpha_0} \cap U_\alpha \neq \emptyset \) by the construction of the topology of \(X \). Therefore \(D \subseteq St(U_{\alpha_0}, U) \). If we put \(V = V_1 \cup \{U_{\alpha_0}\} \), then \(V \) is a finite subset of \(U \) and \(X = St(\bigcup V, U) \), which shows that \(X \) is starcompact.

Next we show that \(X \) is not star-K-Menger. For each \(n \in \mathbb{N} \), let
\[
U_n = \{O_\alpha(d_\alpha) : \alpha < \omega_1\} \cup \{(0, \omega_1)\}
\]
Then \(U_n \) is an open cover of \(X \). Let us consider the sequence \(\{U_n : n \in \mathbb{N}\} \) of open covers of \(X \). It suffices to show that \(\bigcup_{n \in \mathbb{N}} St(K_n, U_n) \neq X \) for any sequence \(\{K_n : n \in \mathbb{N}\} \) of compact subsets of \(X \). Let \(\{K_n : n \in \mathbb{N}\} \) be any sequence of compact subsets of \(X \). For each \(n \in \mathbb{N} \), the set \(K_n \cap \{d_\alpha : \alpha < \omega_1\} \) is finite, since \(K_n \) is compact and \(\{d_\alpha : \alpha < \omega_1\} \) is a discrete closed subset of \(X \). Then there exists \(\alpha_n < \omega_1 \) such that
\[
K_n \cap \{d_\alpha : \alpha > \alpha_n\} = \emptyset.
\]
Let \(\alpha' = \sup\{\alpha_n : n \in \mathbb{N}\} \). Then \(\alpha' < \omega_1 \) and
\[
\bigcup_{n \in \mathbb{N}} K_n \cap \{d_\alpha : \alpha > \alpha'\} = \emptyset.
\]
For each \(n \in \mathbb{N} \), the set \(K_n \) is compact and \([0, \omega_1)\) is countably compact. Hence \(K_n \cap [0, \omega_1) \) is bounded in \([0, \omega_1)\). Thus there exists \(\alpha'_n < \omega_1 \) such that
\[
K_n \cap (\alpha'_n, \omega_1) = \emptyset.
\]
Let \(\alpha'' = \sup\{\alpha'_n : n \in \mathbb{N}\} \). Then \(\alpha'' < \omega_1 \) and
\[
\bigcup_{n \in \mathbb{N}} K_n \cap (\alpha'', \omega_1) = \emptyset.
\]
If we pick $\beta > \max\{\alpha', \alpha''\}$. Then $O_{\beta}(d_{\beta}) \cap K_n = \emptyset$ for each $n \in \mathbb{N}$. Hence $d_{\beta} \notin \text{St}(K_n, \mathcal{U}_n)$ for each $n \in \mathbb{N}$, since $O_{\beta}(d_{\beta})$ is the only element of \mathcal{U}_n containing the point d_{β} for each $n \in \mathbb{N}$, which shows that X is not star-K-Menger. \hfill \square

2.5. Remark. The author does not know if there exists a Hausdorff (or Tychonoff) star-Menger space which is not star-K-Menger.

3. Properties of star-K-Menger spaces

In this section, we study topological properties of star-K-Menger spaces. The space X of the proof of Example 2.2 shows that a closed subset of a Tychonoff star-K-Menger space X need not be star-K-Menger, since $D \times \{c^+\}$ is a discrete closed subset of cardinality \mathfrak{c}. Now we give an example showing that a regular-closed subset of a Tychonoff star-K-Menger space X need not be star-K-Menger. Here a subset A of a space X is said to be regular-closed in X if $\text{cl}_{X \cap X'} A = A$.

3.1. Example. There exists a Tychonoff star-K-Menger space having a regular-closed subspace which is not star-K-Menger.

Proof. Let $D = \{d_{\alpha} : \alpha < \mathfrak{c}\}$ be a discrete space of cardinality \mathfrak{c} and let $aD = D \cup \{d^*\}$ be one-point compactification of D.

Let S_1 be the same space X in the proof of Example 2.2. Then S_1 is a Tychonoff star-K-Menger space.

Let
\[S_2 = (aD \times [0, \mathfrak{c})) \cup (D \times \{\mathfrak{c}\}) \]
be the subspace of the product space $aD \times [0, \mathfrak{c}]$. To show that S_2 is not star-K-Menger. For each $\alpha < \mathfrak{c}$, let
\[U_\alpha = \{d_{\alpha}\} \times (\mathfrak{c}, \mathfrak{c}] \] and $V_\alpha = aD \times [0, \alpha)$.

For each $n \in \mathbb{N}$, let
\[\mathcal{U}_n = \{U_{\alpha} : \alpha < \mathfrak{c}\} \cup \{V_{\alpha} : \alpha < \mathfrak{c}\}. \]

Then \mathcal{U}_n is an open cover of S_2. Let us consider the sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of S_2. It suffices to show that $\bigcup_{n \in \mathbb{N}} \text{St}(K_n, \mathcal{U}_n) \neq X$ for any sequence $(K_n : n \in \mathbb{N})$ of compact subsets of X. Let $(K_n : n \in \mathbb{N})$ be any sequence of compact subsets of X. For each $n \in \mathbb{N}$, since K_n is compact and $\{\{d_{\alpha}, c\} : \alpha < \mathfrak{c}\}$ is a discrete closed subset of S_2, the set $A_n = \{\alpha : \langle d_{\alpha}, c\rangle \in K_n\}$ is finite. Let
\[K'_n = K_n \setminus \bigcup \{U_{\alpha} : \alpha \in A_n\}. \]

If $K'_n = \emptyset$. Then there exists $\alpha_n < \mathfrak{c}$ such that
\[K_n \cap U_{\alpha_n} = \emptyset \text{ for each } \alpha > \alpha'_n. \]

If $K'_n \neq \emptyset$. Since K'_n is closed in K_n, K'_n is compact and $K'_n \subseteq aD \times [0, \mathfrak{c}]$. Then $\pi(K'_n)$ is a compact subset of a countable compact space $[0, \mathfrak{c}]$, where $\pi : aD \times [0, \mathfrak{c}] \to [0, \mathfrak{c}]$ is the projection. Hence $\pi(K'_n)$ is bounded in $[0, \mathfrak{c}]$. Thus there exists $\beta_n < \mathfrak{c}$ such that $\pi(K'_n) \cap (\beta_n, \mathfrak{c}) = \emptyset$. Choose $\alpha''_n > \max\{\alpha : \alpha \in A_n\} \cup \{\beta_n\}$. Then
\[U_{\alpha'} \cap K_n = \emptyset \text{ for each } \alpha > \alpha''_n. \]

Hence, for each $n \in \mathbb{N}$ either $K'_n = \emptyset$ or $K'_n \neq \emptyset$, there exists $\alpha_n < \mathfrak{c}$ such that
\[U_{\alpha} \cap K_n = \emptyset \text{ for each } \alpha > \alpha_n. \]

Let $\beta_0 = \sup\{\alpha_n : n \in \mathbb{N}\}$. Then $\beta_0 < \mathfrak{c}$ and
\[U_{\alpha} \cap K_n = \emptyset \text{ for each } \alpha > \beta_0 \text{ and each } n \in \mathbb{N}. \]
If we pick \(\alpha' > \beta_0 \). Then
\[
U_{\alpha'} \cap K_n = \emptyset \text{ for each } n \in \mathbb{N}.
\]
Hence
\[
\langle d_{\alpha'}, c \rangle \notin \text{St}(K_n, \mathcal{U}_n) \text{ for each } n \in \mathbb{N},
\]
since \(U_{\alpha'} \) is the only element of \(\mathcal{U}_n \) containing the point \(\langle d_{\alpha'}, c \rangle \) for each \(n \in \mathbb{N} \), which shows that \(S_2 \) is not star-K-Menger.

We assume \(S_1 \cap S_2 = \emptyset \). Let \(\pi : D \times \{ c^+ \} \rightarrow D \times \{ c \} \) be a bijection and let \(X \) be the quotient image of the disjoint sum \(S_1 \oplus S_2 \) by identifying \(\langle d_\alpha, c^+ \rangle \) of \(S_1 \) with \(\pi(\langle d_\alpha, c^+ \rangle) \) of \(S_2 \) for every \(\alpha < c \). Let \(\varphi : S_1 \oplus S_2 \rightarrow X \) be the quotient map. It is clear that \(\varphi(S_2) \) is a regular-closed subspace of \(X \) which is not star-K-Menger, since it is homeomorphic to \(S_2 \).

Finally we show that \(X \) is star-K-Menger; we only show that \(X \) is K-starcompact, since every K-starcompact space is star-K-Menger. To this end, let \(\mathcal{U} \) be an open cover of \(X \). Since \(\varphi(S_1) \) is homeomorphic to \(S_1 \) and consequently \(\varphi(S_1) \) is K-starcompact. Thus there exists a compact subset \(K_1 \) of \(\varphi(S_1) \) such that
\[
\varphi(S_1) \subseteq \text{St}(K_1, \mathcal{U}).
\]
Since \(\varphi(aD \times [0, c)) \) is homeomorphic to \(aD \times [0, c) \), the set \(\varphi(aD \times [0, c)) \) is countably compact, hence it is strongly starcompact (see [1,6]). Thus we can find a finite subset \(K_2 \) of \(\varphi(aD \times [0, c)) \) such that
\[
\varphi(aD \times [0, c)) \subseteq \text{St}(K_2, \mathcal{U}).
\]
If we put \(K = K_1 \cup K_2 \). Then \(K \) is a compact subset of \(X \) such that \(X = \text{St}(K, \mathcal{U}) \), which shows that \(X \) is K-starcompact.

Since a continuous image of a K-starcompact space is K-starcompact, it is not difficult to show the following result.

Next we turn to consider preimages. To show that the preimage of a star-K-Menger space under a closed 2-to-1 continuous map need not be star-K-Menger, we use the the Alexandroff duplicate \(A(X) \) of a space \(X \). The underlying set \(A(X) \) is \(X \times \{0, 1\} \); each point of \(X \times \{1\} \) is isolated and a basic neighborhood of \(\langle x, 0 \rangle \in X \times \{0\} \) is a set of the form \((U \times \{0\}) \cup ((U \times \{1\}) \setminus \{\langle x, 0 \rangle\}) \), where \(U \) is a neighborhood of \(x \) in \(X \).

3.3. Example. There exists a closed 2-to-1 continuous map \(f : X \rightarrow Y \) such that \(Y \) is a star-K-Menger space, but \(X \) is not star-K-Menger.

Proof. Let \(Y \) be the same space \(X \) in the proof of Example 2.2. As we proved in Example 2.2 above, \(Y \) is star-K-Menger. Let \(X \) be the Alexandroff duplicate \(A(Y) \). Then \(X \) is not star-K-Menger. In fact, let \(A = \{ \langle d_\alpha, c^+ \rangle, 1 : \alpha < c \} \). Then \(A \) is an open and closed subset of \(X \) with \(|A| = c \), and each point \(\langle d_\alpha, c^+ \rangle, 1 \) is isolated. Hence \(A(X) \) is not star-K-Menger, since every open and closed subset of a star-K-Menger space is star-K-Menger and \(A \) is not star-K-Menger. Let \(f : X \rightarrow Y \) be the projection. Then \(f \) is a closed 2-to-1 continuous map, which completes the proof.

Now, we give a positive result:

3.4. Theorem. Let \(f \) be an open perfect map from a space \(X \) to a star-K-Menger space \(Y \). Then \(X \) is star-K-Menger.
Proof. Since \(f(X) \) is open and closed in \(Y \), we may assume that \(f(X) = Y \). Let \(\{U_n : n \in \mathbb{N}\} \) be a sequence of open covers of \(X \) and let \(y \in Y \). For each \(n \in \mathbb{N} \), since \(f^{-1}(y) \) is compact, there exists a finite subcollection \(\cup_{n \in \mathbb{N}} U_n \) of \(U_n \) such that \(f^{-1}(y) \subseteq \bigcup U_{n \subseteq \mathbb{N}} \) and \(U \cap f^{-1}(y) \neq \emptyset \) for each \(U \in U_n \). Pick an open neighborhood \(V_n \) of \(y \) in \(Y \) such that \(f^{-1}(V_n) \subseteq \bigcup \{U : U \in U_n\} \), then we can assume that

\[(3.1) \quad V_n \subseteq \bigcap \{f(U) : U \in U_n\}, \]

because \(f \) is open. For each \(n \in \mathbb{N} \), taking such open set \(V_n \) for each \(y \in Y \), we have an open cover \(V = \{V_n : y \in Y\} \) of \(Y \). Thus \(\{V_n : n \in \mathbb{N}\} \) is a sequence of open covers of \(Y \), there exists a sequence \(\{K_n : n \in \mathbb{N}\} \) of compact subsets of \(Y \) such that \((St(K_n, V_n) : n \in \mathbb{N}) \) is an open cover of \(Y \), since \(Y \) is star-K-Menger. Since \(f \) is perfect, the sequence \(\{f^{-1}(K_n) : n \in \mathbb{N}\} \) is the sequence of compact subsets of \(X \). To show that \(\{St(f^{-1}(K_n), U_n) : n \in \mathbb{N}\} \) is an open cover of \(X \). Let \(x \in X \). Then there exists a \(n \in \mathbb{N} \) and \(y \in Y \) such that \(f(x) \in V_n \) and \(V_n \cap K_n \neq \emptyset \). Since

\[x \in f^{-1}(V_n) \subseteq \bigcup \{U : U \in U_n\} \]

we can choose \(U \in U_n \) with \(x \in U \). Then \(V_n \subseteq f(U) \) by \((3.1) \), and hence \(U \cap f^{-1}(K_n) \neq \emptyset \). Therefore \(x \in St(f^{-1}(K_n), U_n) \). Consequently, we have \(\{St(f^{-1}(K_n), U_n) : n \in \mathbb{N}\} \) is an open cover of \(X \), which shows that \(X \) is star-K-Menger. \(\square \)

By Theorem 3.4 we have the following corollary.

3.5. Corollary. Let \(X \) be a star-K-Menger space and \(Y \) a compact space. Then \(X \times Y \) is star-K-Menger.

However, the product of two star-K-Menger spaces need not be star-K-Menger. In fact, the following well-known example showing that the product of two countably compact (and hence star-K-Menger) spaces need not be star-K-Menger. Here we give a rough proof for the sake of completeness. For a Tychonoff space \(X \), let \(\beta X \) denote the Čech-Stone compactification of \(X \).

3.6. Example. There exists two countably compact spaces \(X \) and \(Y \) such that \(X \times Y \) is not star-K-Menger.

Proof. Let \(D \) be a discrete space of cardinality \(c \). We can define \(X = \bigcup_{\alpha < \omega_1} E_\alpha \) and \(Y = \bigcup_{\alpha < \omega_1} F_\alpha \), where \(E_\alpha \) and \(F_\alpha \) are the subsets of \(\beta D \) which are defined inductively so as to satisfy the following conditions (1), (2) and (3):

1. \(E_\alpha \cap F_\beta = D \) if \(\alpha \neq \beta \);
2. \(|E_\alpha| \leq c \) and \(|F_\beta| \leq c \);
3. every infinite subset of \(E_\alpha \) (resp., \(F_\alpha \)) has an accumulation point in \(E_{\alpha+1} \) (resp., \(F_{\alpha+1} \)).

These sets \(E_\alpha \) and \(F_\alpha \) are well-defined since every infinite closed set in \(\beta D \) has cardinality at least \(2^c \) (see [7]). Then \(X \times Y \) is not star-K-Menger, because the diagonal \(\{(d, d) : d \in D\} \) is a discrete open and closed subset of \(X \times Y \) with cardinality \(c \) and the open and closed subsets of star-K-Menger spaces are star-K-Menger. \(\square \)

In [1, Example 3.3.3], van Douwen-Reed-Roscoe-Tree gave an example showing that there exist a countably compact space \(X \) and a Lindelöf space \(Y \) such that \(X \times Y \) is not strongly star-Lindelöf. Now, we shall show that the product space \(X \times Y \) is not star-K-Menger.

3.7. Example. There exist a countably compact (and hence star-K-Menger) space \(X \) and a Lindelöf space \(Y \) such that \(X \times Y \) is not star-K-Menger.
Proof. Let $X = [0, \omega_1)$ with the usual order topology and $Y = \omega_1 + 1$ with the following topology: each point α with $\alpha < \omega_1$ is isolated and a set U containing ω_1 is open if and only if $Y \setminus U$ is countable. Then X is countably compact and Y is Lindelöf. Now, we show that $X \times Y$ is not star-K-Menger. For each $\alpha < \omega_1$, let

$$U_\alpha = [0, \alpha] \times [\alpha, \omega_1) \quad \text{and} \quad V_\alpha = (\alpha, \omega_1) \times \{\alpha\}.$$

For each $n \in \mathbb{N}$, let

$$U_n = \{U_\alpha : \alpha < \omega_1\} \cup \{V_\alpha : \alpha < \omega_1\}.$$

Then U_n is an open cover of $X \times Y$. Let us consider the sequence $(U_n : n \in \mathbb{N})$ of the open covers of $X \times Y$. It suffices to show that $\bigcup_{n \in \mathbb{N}} St(K_n, U_n) \neq X \times Y$ for any sequence $(K_n : n \in \mathbb{N})$ of compact subsets of $X \times Y$. For each $n \in \mathbb{N}$, since K_n is compact, then $\pi(K_n)$ is a compact subset of X, where $\pi : X \times Y \to X$ is the projection. Thus there exists $\alpha_n < \omega_1$ such that

$$(K_n \cap ((\alpha_n, \omega_1) \times Y) = \emptyset.$$

Let $\beta = \sup\{\alpha_n : n \in \mathbb{N}\}$. Then $\beta < \omega_1$ and

$$(\bigcup_{n \in \mathbb{N}} K_n) \cap ((\beta, \omega_1) \times Y) = \emptyset.$$

If we pick $\alpha > \beta$. Then $\langle \alpha + 1, \alpha \rangle \notin St(K_n, U_n)$ for each $n \in \mathbb{N}$, since V_α is the only element of U_n containing the point $\langle \alpha + 1, \alpha \rangle$ for each $n \in \mathbb{N}$, which shows that $X \times Y$ is not star-K-Menger. \qed

4. Acknowledgments

The author would like to thank Prof. Rui Li for his kind help and valuable suggestions. He would also like to thank the referee for his/her careful reading of the paper and a number of valuable suggestions which led to improvements on several places. The present form of Example 2.1 are due to his/her suggestions.

References