THE STOLARSKY TYPE FUNCTIONS
AND THEIR MONOTONICITIES

V. Lokesha*, Zhi-Gang Wang†, Zhi-Hua Zhang‡ and S. Padmanabhan*

Received 04:07:2008 : Accepted 23:03:2009

Abstract
In this paper, we give the definition of a Stolarsky type function, and obtain its monotonicity. By using these results, we establish a series of means and their monotonicities in n variables.

Keywords: Two-parameter, Monotonicity, Mean, Vandermonde determinant.

2000 AMS Classification: 26 D 15.

1. Introduction
The so-called Stolarsky means \(S(a, b; \alpha)\) were defined first by Stolarsky in [9] as follows:

\[
S(a, b; \alpha) = \left[\frac{a^{\alpha+1} - b^{\alpha+1}}{(\alpha + 1)(a - b)} \right]^{1/\alpha}, \quad \alpha(a + 1)(a - b) \neq 0; \tag{1.1}
\]

\[
S(a, b; -1) = \frac{a - b}{\ln a - \ln b}, \quad \alpha(a - b) \neq 0, \quad \alpha = -1; \tag{1.2}
\]

\[
S(a, b; 0) = \exp \left(-1 + \frac{a \ln a - b \ln b}{a - b} \right), \quad (\alpha + 1)(a - b) \neq 0, \quad \alpha = 0; \tag{1.3}
\]

\[
S(a, a; \alpha) = a, \quad a = b. \tag{1.4}
\]

The monotonicity of \(S(a, b; \alpha)\) has been discussed by Leach and Sholander [3, 4], and by Qi [7, 8] also using different ideas and simpler methods.

*Department of Mathematics, Acharya institute of Technology, Soldevahnalli, Hesaragatta Road, Karanataka Bangalore-90, India. E-mail: lokiv@yahoo.com
†Corresponding author
‡School of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha 410076, Hunan, People’s Republic of China. E-mail: zhigwang@163.com
§Department of Mathematics, Zixing Educational Research Section, Chenzhou 423400, Hunan, People’s Republic of China. E-mail: zzxh12340163.com
¶Department of Mathematics, R.N.S. Institute of Technology, Karanataka, Bangalore, India. E-mail: padmanabhanapsce@rediffmail.com
In [7], Qi studied the following generalized weighted Stolarsky type mean values $E_{f,p}(a,b;\alpha)$ with parameter α, and proved that $E_{f,p}(x,y;\alpha)$ is an increasing function in α:

\begin{equation}
E_{f,p}(a,b;\alpha) = \left(\frac{\int_a^b p(u)f^\alpha(u)du}{\int_a^b p(u)du}\right)^{\frac{1}{\alpha}}, \quad (\alpha - \beta)(a - b) \neq 0;
\end{equation}

\begin{equation}
E_{f,p}(a,b;0) = \exp\left(\frac{\int_a^b p(u)\ln f(u)du}{\int_a^b p(u)du}\right), \quad \alpha = 0, a - b \neq 0;
\end{equation}

\begin{equation}
E_{f,p}(a,a;\alpha) = f(a), \quad \alpha = \beta, a = b;
\end{equation}

where $a, b, \alpha, \beta \in \mathbb{R}$, $p \geq 0$, and $f > 0$ is an integrable function on the interval $[a,b] \subset \mathbb{R}$.

We know by the definition of the power mean that

\begin{equation}
M(x;\alpha) = \left(\frac{\sum_{k=1}^n x_k^\alpha}{n}\right)^{\frac{1}{\alpha}}, \quad \alpha \neq 0;
\end{equation}

\begin{equation}
M(x;0) = \exp\left(\frac{\sum_{k=1}^n \ln x_k}{n}\right), \quad \alpha = 0;
\end{equation}

where $a_k \in \mathbb{R}_+$, and $\alpha \in \mathbb{R}$.

We note that for each of these two means the one-parameter means are of the type $(F(\alpha)/F(0))^{1/\alpha}$ if $\alpha \neq 0$, and $\exp(F'(\alpha)/F(\alpha))$ if $\alpha = 0$, where $F(\alpha)$ is a certain univariate function involving an α-order power.

In this paper, we define a Stolarsky type function and obtain its monotonicity. By using these results, we establish a series of means and their monotonicities in n variables.

2. Main results

Throughout the paper we assume \mathbb{R} to be the set of real numbers, \mathbb{R}_+ the set of strictly positive real numbers, \mathbb{R}^n the n-dimensional Euclidean Space,

\[\mathbb{R}^n_+ = \{(x_1, x_2, \ldots, x_n) : x_i > 0, \ i = 1, 2, \ldots, n\}, \]

and

\[\alpha x = (\alpha x_1, \alpha x_2, \ldots, \alpha x_n), \quad e^x = (e^{x_1}, e^{x_2}, \ldots, e^{x_n}), \]

\[x^\alpha = (x_1^\alpha, x_2^\alpha, \ldots, x_n^\alpha), \quad \ln x = (\ln x_1, \ln x_2, \ldots, \ln x_n), \]

where $\alpha \in \mathbb{R}$, $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n_+$, and $y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n_+$.

2.1. Definition. Let $\alpha, \beta \in \mathbb{R}$, and f be continuous involving an $(\alpha\beta)$-order power function on $I \subseteq \mathbb{R}^n$. If $F(\alpha) = f(x;\alpha\beta)$, $\beta \neq 0$, and f is a differentiable function with respect to $\alpha \in \mathbb{R}$, then the Stolarsky type function $S_f(x;\alpha,\beta)$ is defined as follows,

\begin{equation}
S_f(x;\alpha) = \left(\frac{f(x;\alpha\beta)}{f(x;0)}\right)^{\frac{1}{\alpha}}, \quad (\alpha \neq 0),
\end{equation}

\begin{equation}
S_f(x;0) = \lim_{\alpha \to 0} \exp\left(\frac{f'_\alpha(x;\alpha\beta)}{f(x;\alpha\beta)}\right), \quad (\alpha = 0),
\end{equation}

where f'_α is the partial derivative with respect to α of $f(x;\alpha\beta)$.

2.2. Remark. For convenience, we write

\begin{equation}
S_f(x;\alpha) = S_f(x) = S_f(\alpha) = S_f,
\end{equation}

shifting notation to suit the context.
2.3. Theorem. Let $\alpha, \beta \in \mathbb{R}, \beta \neq 0$, and f be continuous involving an $(\alpha\beta)$-order power function on $I \subseteq \mathbb{R}^+_+$. If
\[
(2.4) \quad f(x; \alpha\beta)f''_{\alpha\beta}(x; \alpha\beta) > |f'_{\alpha\beta}(x; \alpha\beta)|^2,
\]
then $S_f(x; \alpha)$ is a monotonic increasing function in α, and monotonic decreasing if the inequality (2.4) is reversed.

Proof. Suppose the inequality (2.4) holds. Setting $T(\alpha) = \ln |f(x; \alpha\beta)|$, then $T'(\alpha) = f'_{\alpha\beta}(x; \alpha\beta)/f(x; \alpha\beta)$, and
\[
T''(\alpha) = \frac{f(x; \alpha\beta)f''_{\alpha\beta}(x; \alpha\beta) - |f'_{\alpha\beta}(x; \alpha\beta)|^2}{|f(x; \alpha\beta)|^2} > 0.
\]
When $\alpha = 0$, $\ln S_f = f'_{\alpha}(x; \alpha\beta)/f(x; \alpha\beta) = T'(\alpha)$, and $\partial \ln S_f/\partial \alpha = T''(\alpha) > 0$, which implies that $S_f(x; \alpha)$ is a monotonic increasing function in α.

When $\alpha \neq 0$, using the mean value theorem, we find
\[
\frac{\partial \ln S_f}{\partial \alpha} = \frac{T'(\alpha)}{\alpha} - \frac{T(\alpha)}{\alpha^2} = \frac{T'(\alpha) - T(\alpha)/\alpha}{\alpha} = \frac{T'(\alpha) - T''(\alpha)}{\alpha} = \frac{\alpha - \eta T''(\eta)}{\alpha} > 0,
\]
where ζ is between 0 and α, and η is between α and ζ. That is to say, $S_f(x; \alpha)$ is a monotonic increasing function in α. Theorem 2.3 is thus proved. \square

3. The generalized weighted Stolarsky type functional mean

3.1. Theorem. The generalized weighted Stolarsky type functional mean values $S_{f,p}(x; \alpha)$ are monotonic increasing functions with α in \mathbb{R}, where
\[
(3.1) \quad S_{f,p}(x; \alpha) = \left(\frac{\int_E p(t)f^\alpha(A(x; t))dt}{\int_E p(t)dt} \right)^{1/\alpha}, \quad \alpha \neq 0,
\]
\[
(3.2) \quad S_{f,p}(x; 0) = \exp \left(\frac{\int_E p(t)\ln f(A(x; t))dt}{\int_E p(t)dt} \right), \quad \alpha = 0,
\]
and $E = \{ (t_1, t_2, \ldots, t_n) | \sum_{i=1}^n t_i \leq 1, \sum_{i=1}^n t_i \geq 0, i = 1, 2, \ldots, n \}, t_0 = 1 - \sum_{i=1}^n t_i, A(x; t) = x_0 + \sum_{i=1}^n (x_i - x_0) t_i = \sum_{i=0}^{n-1} x_i t_i, x_i \in I \subseteq \mathbb{R}^+_+$, and $p \geq 0, f > 0$ integrable functions respectively on E and I.

Proof. By taking $T(x; \alpha) = \int_E p(t)f^\alpha(A(x; t))dt$, and using Cauchy’s integral inequality, we have
\[
T(x; \alpha \beta)T''_{\alpha\beta}(x; \alpha\beta) - [T'_{\alpha\beta}(x; \alpha\beta)]^2
\]
\[
= \int_E p(t)f^\alpha(A(x; t))dt \cdot \int_E p(t)f^\alpha(A(x; t)) \ln^2 f(A(x; t))dt
\]
\[
- \left(\int_E p(t)f^\alpha(A(x; t)) \ln f(A(x; t))dt \right)^2 > 0,
\]
which implies Theorem 3.1 from Theorem 2.3. \square

3.2. Corollary. The generalized weighted Stolarsky type functional mean values $E_{f,p}(a, b; \alpha)$ are monotonic increasing functions with α in \mathbb{R}, where $E_{f,p}(a, b; \alpha)$ is given by (1.5)–(1.7).

Proof. Setting $u = x_0 + (x_1 - x_0)t_1$, then $du = (x_1 - x_0)dt_1$. Setting $a = x_0$ and $b = x_1$, from Theorem 3.1, we immediately obtain Corollary 3.2. The proof is completed. \square
4. The generalized weighted Stolarsky type functional mean with two parameters

4.1. Definition. Let \(\alpha, \beta \in \mathbb{R}, \ E, \ t_0 \) and \(p, f \) be defined as in Theorem 3.1. If

\[
M_\beta(x; t) = \left(x_0^\beta + \sum_{i=1}^n (x_i^\beta - x_0^\beta) t_i \right)^{1/\beta},
\]

and \(M_0(x; t) = G(x; t) = \prod_{i=0}^n x_i^{t_i}, \) then the first generalized weighted Stolarsky type functional mean values, \(S_{f,p}^{[1]}(x; \alpha, \beta), \) with two parameters \(\alpha \) and \(\beta \) are as follows

\[
(4.1) \quad S_{f,p}^{[1]}(x; \alpha, \beta) = \left(\frac{\int_E p(t) f^\alpha(M_\beta(x; t)) dt}{\int_E p(t) dt} \right)^{1/\alpha}, \quad \alpha \beta \neq 0;
\]

\[
(4.2) \quad S_{f,p}^{[1]}(x; 0, \beta) = \exp \left(\frac{\int_E p(t) \ln f(M_\beta(x; t)) dt}{\int_E p(t) dt} \right), \quad \alpha = 0, \beta \neq 0;
\]

\[
(4.3) \quad S_{f,p}^{[1]}(x; \alpha, 0) = \left(\frac{\int_E p(t) f^\alpha(G(x; t)) dt}{\int_E p(t) dt} \right)^{1/\alpha}, \quad \alpha \neq 0, \beta = 0;
\]

\[
(4.4) \quad S_{f,p}^{[1]}(x; 0, 0) = \exp \left(\frac{\int_E p(t) \ln f(G(x; t)) dt}{\int_E p(t) dt} \right), \quad \alpha = \beta = 0.
\]

In a manner similar to Section 3, from Definition 4.1 we obtain the following theorem.

4.2. Theorem. The first generalized weighted Stolarsky type functional mean values \(S_{f,p}^{[1]}(x; \alpha, \beta) \) are monotonic increasing functions in \(\alpha \in \mathbb{R}. \)

4.3. Theorem. The first generalized weighted Stolarsky type functional mean values \(S_{f,p}^{[1]}(x; \alpha, \beta) \) are monotonic increasing functions with \(\beta \in \mathbb{R} \) if \(f \) is a monotonic increasing function.

Proof. This follows from the weighted power mean inequality, Definition 4.1 and the fact that \(f \) is a monotonic increasing function. \(\square \)

4.4. Remark. We have \(S_{f,p}^{[1]}(x; 1, 1) = S_{f,p}(x; \alpha). \)

4.5. Definition. Let \(\alpha, \beta \in \mathbb{R}, \ E, \ t_0 \) and \(p, f \) be defined as in Theorem 3.1. If

\[
M_\beta(x^{\alpha}; t) = \left[x_0^{\alpha \beta} + \sum_{i=1}^n (x_i^{\alpha \beta} - x_0^{\alpha \beta}) t_i \right]^{1/\beta},
\]

and \(M_0(x^{\alpha}; t) = G(x^{\alpha}; t) = \prod_{i=0}^n x_i^{t_i}, \) and \(f'(1) \) exists, then the second generalized weighted Stolarsky type functional mean values \(S_{f,p}^{[2]}(x; \alpha, \beta) \) with two parameters \(\alpha \) and \(\beta \) are as follows

\[
(4.5) \quad S_{f,p}^{[2]}(x; \alpha, \beta) = \left(\frac{\int_E p(t) f^\alpha(M_\beta(x^{\alpha}; t)) dt}{\int_E p(t) dt} \right)^{1/\alpha}, \quad \alpha \beta \neq 0;
\]

\[
(4.6) \quad S_{f,p}^{[2]}(x; 0, \beta) = \exp \left(\frac{\int_E p(t) f'(1) \left(\sum_{k=1}^n t_k \ln x_k \right) dt}{\int_E p(t) dt} \right), \quad \alpha = 0, \beta \in \mathbb{R};
\]

\[
(4.7) \quad S_{f,p}^{[2]}(x; \alpha, 0) = \left(\frac{\int_E p(t) f^\alpha(G(x^{\alpha}; t)) dt}{\int_E p(t) dt} \right)^{1/\alpha}, \quad \alpha \neq 0, \beta = 0.
\]

4.6. Theorem. The second generalized weighted Stolarsky type functional mean values \(S_{f,p}^{[2]}(x; \alpha, \beta) \) are monotonic increasing functions with \(\alpha \) in \(\mathbb{R} \) if \(f' > 0, ff'' > (f')^2 \) and \(\beta > 0. \)
Proof. By taking \(T(x; \alpha \beta) = \int_E \rho(t) f(M_\beta(x^\alpha; t)) dt \), if \(\beta \neq 0 \), then

\[
(4.8) \quad T'_\alpha(x; \alpha \beta) = \int_E \rho(t) f'(M_\beta(x^\alpha; t)) \left[\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \right]^{1/\beta-1} \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \ln x_k \right) dt,
\]

\[
(4.9) \quad T''_\alpha(x; \alpha \beta) = \int_E \rho(t) f''(M_\beta(x^\alpha; t)) \left[\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \right]^{1/\beta-1} \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \ln x_k \right) dt
\]

\[
+ \int_E \rho(t) f''(M_\beta(x^\alpha; t)) \left(1 - \beta \right) \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \right) \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \ln x_k \right)^2 dt
\]

\[
+ \beta \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \right)^{1/\beta-1} \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \ln x_k \right) dt.
\]

Using Cauchy’s integral inequality, from (4.8)-(4.9), and \(f' > 0, f f'' > (f')^2 \), \(\beta > 0 \), yields

\[
T(x; \alpha \beta) T''_\alpha(x; \alpha \beta) - [T'_\alpha(x; \alpha \beta)]^2
\]

\[
= \int_E \rho(t) f(M_\beta(x^\alpha; t)) dt \cdot \int_E \rho(t) f''(M_\beta(x^\alpha; t))
\]

\[
\cdot \left[\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \right]^{1/\beta-1} \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \ln x_k \right)^2 dt
\]

\[
- \left[\int_E \rho(t) f'(M_\beta(x^\alpha; t)) \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \right)^{1/\beta-1} \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \ln x_k \right) dt \right]^2
\]

\[
+ \int_E \rho(t) f'(M_\beta(x^\alpha; t)) dt \cdot \int_E \rho(t) f''(M_\beta(x^\alpha; t)) \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \right)^{1/\beta-2}
\]

\[
\cdot \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \ln x_k \right)^2 + \beta \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \right) \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \ln x_k \right)^2
\]

\[
- \left(\sum_{k=0}^{n} x_k^{\alpha \beta} t_k \ln x_k \right)^2 \right) dt > 0
\]

which implies Theorem 4.6 from Theorem 2.3. If \(\beta = 0 \) we can obtain Theorem 4.6 similarly.

\[\square\]

5. Some mean values in \(n \) variables

5.1. Notation and lemmas. Throughout this section we assume \(x = (x_0, x_1, \ldots, x_n) \in \mathbb{R}_{n+1}^n \), and that \(\varphi \) is a function in \(\mathbb{R} \). Put

\[
(5.1) \quad V(x; \varphi) = \begin{vmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\
1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^{n-1}
\end{vmatrix}.
\]

Assuming \(\varphi(t) = t^{n+r} \ln^r t \), then
where

\[V(x; r, k) = \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} & x_0^n \ln^k x_0 \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} & x_1^n \ln^k x_1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} & x_n^n \ln^k x_n \end{vmatrix} . \]

Note the case \(r = 0 \) and \(k = 0 \) is just the determinant of Van der Monde’s matrix of the \(n \)-th order:

\[V(x; 0, 0) = \prod_{0 \leq i < j \leq n} (x_j - x_i). \]

Write \(\ln x = (\ln x_0, \ln x_1, \ldots, \ln x_n) \), then

\[V(\ln x; r, k) = \begin{vmatrix} 1 & \ln x_0 & \ln^2 x_0 & \cdots & \ln^{n-1} x_0 & x_0^r \ln^k x_0 \\ 1 & \ln x_1 & \ln^2 x_1 & \cdots & \ln^{n-1} x_1 & x_1^r \ln^k x_1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & \ln x_n & \ln^2 x_n & \cdots & \ln^{n-1} x_n & x_n^r \ln^k x_n \end{vmatrix} . \]

Also, let \(0 \leq i \leq n \), and set

\[V_{[i]}(x; \varphi) = \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-i} & \varphi(x_0) \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-i} & \varphi(x_1) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_i & x_i^2 & \cdots & x_i^{n-i} & \varphi(x_i) \\ 0 & 1 & 2x_i \cdots & (n-1)x_i^{n-2} & \varphi'(x_i) \\ 1 & x_{i+1} & x_{i+1}^2 & \cdots & x_{i+1}^{n-i} & \varphi(x_{i+1}) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-i} & \varphi(x_n) \end{vmatrix} . \]

and for \(\varphi(t) = t^{n+r+1} \) in (5.5), we have

\[V_{[i]}(x; r) = \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-i} & x_0^{n+r+1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-i} & x_1^{n+r+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_i & x_i^2 & \cdots & x_i^{n-i} & x_i^{n+r+1} \\ 0 & 1 & 2x_i \cdots & nx_i^{n-i} & (n+r+1)x_i^{n+r} \\ 1 & x_{i+1} & x_{i+1}^2 & \cdots & x_{i+1}^{n-i} & x_{i+1}^{n+r+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-i} & x_n^{n+r+1} \end{vmatrix} , \quad (i \leq i \leq n), \]

and

\[V_{[i]}(x; 0) = (-1)^{i+1} V(x; 0, 0) \prod_{j=0, j \neq i}^{n} (x_j - x_i) = (-1)^{i+1} V^2(x; 0, 0)/V_i(x), \]

where

\[V_i(x) = \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-i} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-i} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{i-1} & x_{i-1}^2 & \cdots & x_{i-1}^{n-i} \\ 1 & x_{i+1} & x_{i+1}^2 & \cdots & x_{i+1}^{n-i} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-i} \end{vmatrix} , \quad (0 \leq i \leq n). \]

(5.8)
5.1. Lemma. (see [12, 13, 14]) If \(n \in \mathbb{N} \), and \(\varphi \) is a \(n \)-order differentiable function on an interval \(I \subset \mathbb{R}_+ \), then

\[
(5.9) \quad V(x; \varphi) = V(x; 0, 0) \int_E \varphi^{(n)}(A(x; t)) dt,
\]

\[
(5.10) \quad \sum_{i=0}^{n} (-1)^{i+1} \lambda_i V_i(x; \varphi) V_i(x) = V^2(x; 0, 0) \int_E A(\lambda; t) \varphi^{(n)}(A(x; t)) dx,
\]

where \(dt = dt_1 dt_2 \cdots dt_n \), and \(E, A(x; t) \) are as in Theorem 3.1.

5.2. Lemma. (see [10]) Let \(r \) be an integer, then

\[
(5.11) \quad V(a; r, 0) = V(a; 0, 0) \cdot \sum_{i_0, i_1, \ldots, i_n \geq 0} \prod_{k=0}^{n} a_{i_k}^{i_k}, \quad r > 0;
\]

\[
(5.12) \quad V(a; r, 0) = 0, \quad r = 0, 1, \ldots, -(n - 1);
\]

\[
(5.13) \quad V(a; r, 0) = (-1)^n V(a; 0, 0) \cdot \sum_{i_0, i_1, \ldots, i_n \geq 1} \prod_{k=0}^{n} a_{i_k}^{-i_k}, \quad r < -n.
\]

5.2. The Stolarsky type mean with one parameter in \(n \) variables.

5.3. Definition. (see [11]) The Stolarsky type generalized mean values \(S_\alpha(x) \) with parameter \(\alpha \) in \(n \) variables are

\[
(5.14) \quad S_\alpha(x) = \left[n! \int_E \varphi_1^{(n)}(\alpha, A(x; t)) dt \right]^{1/\alpha}, \quad \alpha \neq 0,
\]

\[
(5.15) \quad S_0(x) = \exp \left(n! \int_E \varphi_2^{(n)}(0, A(x; t)) dt \right), \quad \alpha = 0,
\]

where \(\varphi_1^{(n)}(\alpha, t) = t^\alpha \) and \(\varphi_2^{(n)}(\alpha, t) = t^\alpha \ln t \).

5.4. Theorem. If the generalized mean values \(S_\alpha(x) \) with two parameters \(\alpha \) and \(\beta \), in \(n \) variables are as given by Definition 5.3, then

\[
(5.16) \quad S_\alpha(x) = \left[\prod_{k=1}^{n} \frac{V(x; \alpha, 0)}{k + \alpha} \right]^{\frac{1}{\alpha}}, \quad \alpha \neq 0, -1, -2, \ldots, -n;
\]

\[
(5.17) \quad S_0(x) = \exp \left(\frac{V(x; 0, 1)}{V(x; 0, 0)} \sum_{k=1}^{n} \frac{1}{k} \right), \quad \alpha = 0;
\]

\[
(5.18) \quad S_\alpha(x) = \left[\frac{n! \cdot V(x; \alpha, 1)}{(-1)^{n+1}(\alpha - 1)! \cdot (n + \alpha) \cdot V(x; 0, 0)} \right]^{\frac{1}{\alpha}}, \quad \alpha = -1, \ldots, -n;
\]

where \(S_\alpha(x) \) are monotonic increasing functions with \(\alpha \) in \(R \).

Proof. Consider the following two functions:

\[
(5.19) \quad \varphi_1(\alpha, t) = \prod_{k=1}^{n} (k + \alpha)^{-1} t^{\alpha + \alpha},
\]

if \(\alpha \neq 0, -1, -2, \ldots, -n; \) and

\[
(5.20) \quad \varphi_2(0, t) = (n!)^{-1} t^n \left(\ln t - \sum_{k=1}^{n} \frac{1}{k} \right),
\]

if \(\alpha = 0; \) and

\[
(5.21) \quad \varphi_1(\alpha, t) = [(-1)^{n+1}(\alpha - 1)! (n + \alpha)]^{-1} t^{\alpha + \alpha} \ln t,
\]

if \(\alpha \neq 0, -1, -2, \ldots, -n; \) and

\[
(5.22) \quad \varphi_2(0, t) = (n!)^{-1} t^n \left(\ln t - \sum_{k=1}^{n} \frac{1}{k} \right),
\]

if \(\alpha = 0; \) and

\[
(5.23) \quad \varphi_1(\alpha, t) = [(-1)^{n+1}(\alpha - 1)! (n + \alpha)]^{-1} t^{\alpha + 1} \ln t,
\]

if \(\alpha \neq 0, -1, -2, \ldots, -n; \) and

\[
(5.24) \quad \varphi_2(0, t) = (n!)^{-1} t^n \left(\ln t - \sum_{k=1}^{n} \frac{1}{k} \right),
\]

if \(\alpha = 0; \) and
if \(\alpha = -1, -2, \ldots, -n \). Then \(\varphi_1^{(n)}(\alpha, t) = t^\alpha \) and \(\varphi_2^{(n)}(0, t) = \ln t \).

According to Lemma 5.1 and (5.19)–(5.21), we know that the expressions (5.16)–(5.18) hold true.

Let \(f^n(A; x; t) = \varphi_1^{(n)}(\alpha, A; x; t) \). Then \(\ln f(A; x; t) = \varphi_2^{(n)}(0; A; x; t) \). Taking \(p(x) \equiv 1 \), we find from Theorem 3.1 that the \(S_n(x) \) are monotonic increasing functions with \(\alpha \) in \(R \). The proof of Theorem 5.4 is completed. \(\square \)

5.5. Remark. (see [10]–[17]) \(S_0(x) \) is the so-called identric mean in \(n \) variables, and \(S_{-1}(x) \) the first logarithmic mean \(L(x) \). It is noted that \(S_0(x) := I(x) \), and

\[
L(x) := S_{-1}(x) = \frac{V(x; 0; 0)}{n V(x; -1, 1)}.
\]

5.6. Remark. (see [1]) If \(\alpha \) is a nonnegative integer, from Lemma 5.2, \([S_n(x)]^\alpha \) is the \(r \)-th generalized elementary symmetric mean in \(n \) variables, i.e.

\[
\sum \alpha \bigg(\begin{array}{l}
\end{array} \bigg) := [S_n(x)]^\alpha = \left(\begin{array}{c}
n + \alpha \\
\alpha
\end{array} \right)^{-1} \sum_{i_0 + i_1 + \cdots + i_n = \alpha, i_0, i_1, \ldots, i_n \in N_0} n \cdot x^{i_k}.
\]

5.3. The Stolarsky type mean with two parameters in \(n \) variables.

5.7. Definition. (see [12]) The Stolarsky type generalized mean values \(S_{\alpha, \beta}(x) \) with two parameters \(\alpha \) and \(\beta \) in \(n \) variables are

\[
S_{\alpha, \beta}(x) = \left[n! \int_E \varphi_1^{(n)}(\alpha, M_\beta(x; t))dt \right]^{1/\alpha}, \quad \alpha \neq 0, \beta \neq 0;
\]

\[
S_{0, \beta}(x) = \exp \left(n! \int_E \varphi_2^{(n)}(0, M_\beta(x; t))dt \right), \quad \alpha = 0, \beta \neq 0;
\]

\[
S_{\alpha, 0}(x) = \left[n! \int_E \varphi_1^{(n)}(\alpha, G(x; t))dt \right]^{1/\beta}, \quad \alpha \neq 0, \beta = 0;
\]

\[
S_{0, 0}(x) = \left(\prod_{i=0}^{n} a_i \right)^{1/(n+1)}, \quad \alpha = 0, \beta = 0;
\]

where \(\varphi_1^{(n)}(\alpha, t) = t^\alpha \) and \(\varphi_2^{(n)}(\alpha, t) = t^\alpha \ln t \).

5.8. Theorem. We have that \(S_{\alpha, \beta}(x) \) are monotonic increasing functions with \(\alpha \) in \(R \), and

\[
S_{\alpha, \beta}(x) = \left[\prod_{k=1}^{n} \frac{\beta_k^{\beta}}{k^{\beta + \alpha}} \cdot \frac{V(x^{\beta}; 0; 0)}{V(x^{\beta}; 0; 0)} \right]^{1/\alpha}, \quad \beta \neq 0, \alpha \neq -k\beta, 0 \leq k \leq n;
\]

\[
S_{\alpha, 0}(x) = \left[(-1)^{k + 1} k^{\beta} \frac{n}{k} \cdot \frac{V(x^{\beta}; -k, 1)}{V(x^{\beta}; 0, 0)} \right]^{-1/(k\beta)}, \quad \beta \neq 0, \alpha = -k\beta, 1 \leq k \leq n;
\]

\[
S_{0, 0}(x) = \left[\prod_{i=0}^{n} \frac{1}{\alpha_i} \cdot \frac{V(\ln x; 0, 0)}{V(\ln x; 0, n)} \right]^{1/\alpha}, \quad \beta = 0, \alpha \neq 0;
\]

\[
S_{0, 0}(x) = \exp \left(\frac{1}{\beta} \sum_{k=1}^{n} \frac{1}{k} \right), \quad \alpha = 0, \beta \neq 0;
\]

\[
S_{0, 0}(x) = \left(\prod_{i=0}^{n} x_i \right)^{1/(n+1)}, \quad \alpha = \beta = 0.
\]
5.9. Remark. Replacing α by $\alpha - \beta$, the generalized Stolarsky type mean $S_{\alpha-\beta,\beta}(x)$ is the Pečarić-Šimić mean in [6].

5.10. Remark. (see [15] and also [5, 16]) If $\alpha = 1$, then $S_{1,0}(x)$ is the second logarithmic mean in n variables:

\[(5.33) \quad l(x) := S_{1,0}(x) = \frac{n!V(\ln x; 1, 0)}{V(\ln x; 0, n)}.
\]

5.11. Remark. (see [15] and also [5]) Change β to $1/\beta$, and set $\alpha = 1$. If β is a nonnegative integer, from Lemma 5.2 we see that $S_{1,1/\beta}(x)$ is the generalized Heron’s mean in n variables:

\[(5.34) \quad H_{\beta}(x) := S_{1,1/\beta}(x) = \frac{(n+\beta)^{\beta} - 1}{\beta} \sum_{i_0+i_1+\cdots+i_n=\beta, i_0,i_1,\ldots,i_n\in\mathbb{N}_0}^n \prod_{k=1}^n x_k^{i_k/\beta},
\]

5.4. The r-th weighted elementary symmetric mean in n variables.

5.12. Definition. (see [17]) Let x be a tuple of n non-negative real numbers and the weight λ a tuple of n positive real numbers, then

\[(5.35) \quad E_{\alpha}(x, \lambda) = \sum_{i_0+i_1+\cdots+i_n=\alpha, i_0,i_1,\ldots,i_n\in\mathbb{N}_0} \prod_{k=1}^n x_k^{i_k/\alpha},
\]

is called the α-th weighted elementary symmetric function of x for the positive weight λ, where the sum is over all \(\binom{n+\alpha+1}{\alpha}\)-tuples of non-negative integers such that $i_1 + i_2 + \cdots + i_n = \alpha$; In addition, $E_0(x, \lambda) = \sum_{i=1}^n \lambda_i$. The α-th weighted elementary symmetric mean of x for λ is defined by

\[(5.36) \quad \sum \alpha(x, \lambda) = \frac{E_{\alpha}(x, \lambda)}{\binom{n+\alpha+1}{\alpha} \sum_{i=1}^n \lambda_i}.
\]

5.13. Theorem. (see [17]) If $r \in \mathbb{N}$, then

\[(5.37) \quad \sum \alpha(x, \lambda) = \int E \left(\sum_{i=0}^n \lambda_i x_i \right) \left(\sum_{i=0}^n a_i x_i \right)^{\alpha} dx
\]

is a monotonic increasing function with α in \mathbb{N}.

Acknowledgement. We are thankful to the referee for some valuable suggestions.

References

