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Abstract
In the present paper, by considering nonlinear integral operators and using their approxi-
mations via regular summability methods, we obtain characterizations for some function
spaces including the space of absolutely continuous functions, the space of uniformly con-
tinuous functions, and their other variants. We observe that Bell-type summability meth-
ods are quite e�ective to generalize and improve some related results in the literature. At
the end of the paper, we discuss some special cases and applications.
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1. Introduction

Integral operators of convolution type and Mellin type are widely used in approximation
theory. Some of them have a linear structure (see [14,19� 21,28]) while others are nonlinear
(see [2� 4]). Beside approximation theory, there are many engineering applications of
these operators, such as in optical physics, image processing and signal processing (see
[13,17,22,23]). They also play a crucial role in the characterization of absolutely continuous
functions (see [5� 7]). In our recent papers, we also consider regular summability methods
instead of the usual convergence in the approximation by these operators (see [9� 11]) in
order to generalize and improve the known results in the literature. We should note that,
in the approximation by these operators, we consider suitable functions spaces endowed
with the variation semi-norm, the uniform (supremum) norm, the L p norm, and so on.

In mathematical analysis, a summability method is an alternative formulation of con-
vergence of a series or a sequence which is divergent in the conventional sense. So, it
is quite useful to overcome the divergence problem in some kind of divergent series or
sequences. It is also possible to accelerate the rate of convergence by using a suitable
summability method (see [30,33]). Furthermore, so far many applications of summability
methods have been studied in approximation theory (see [1,8,12,29,31]).

Since, in this work, we mainly consider Bell-type summability (see [15, 16]), we �rst
recall this concept as follows.
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Let A = f A � g := f [a�
nk ]g (n; k; � 2 N) be a family of in�nite matrices of real or

complex numbers. Then, for a sequencex = f xkgk2 N ; A� transform of x is denoted by
Ax := f (Ax) �

ng, which is given by(Ax) �
n =

P 1
k=1 a�

nk xk (n; � 2 N) if the series is convergent
for every n; �: Then, we say that x is A� summable to a numberL if limn!1 (Ax) �

n = L
uniformly in � 2 N, which is denoted by

A� lim x = L:

In particular, we focus on nonnegative regular summability methods satisfying the prop-
erty A� lim x = L wheneverlim x = L. Note that a method A = f A � g is called row �nite
if, for every � 2 N, each row of the matrix A � contains at most a �nite number of nonzero
terms.

Observe that Bell-type summability methods are quite general and contain many well-
known methods, such as, the Cesàro mean, the almost convergence and the order summa-
bility (see [18,24� 27]).

In this work, our goal is, using summability methods, to give some characterizations for
absolute continuity and uniform continuity, which will be more general than the results
by Angeloni and Vinti [ 2, 6]. For this process, we use nonlinear integral operators of
convolution type and Mellin type, which are de�ned in the next sections. We also discuss
some signi�cant applications and special cases of our results.

2. Characterizations of absolute continuity

In this section, we obtain characterizations of the absolute continuity. By using the
periodicity of functions, we �rst get a characterization in one dimension. Later, without the
periodicity, we give characterizations in N -dimension with the help of the approximation
by nonlinear integral operators constructed with respect to the Lebesgue measure and the
Haar measure.

Throughout the section, let A = f [a�
nk ]g (n; k; � 2 N) be a nonnegative regular summa-

bility method.
We now study the above cases in the following three subsections.

2.1. Characterization in one dimension with periodicity

We �rst need the following function spaces:
� BV2� , the space of all2� -periodic measurable functions of bounded variation on

the interval [� �; � ].
� AC2� , the space of all 2� -periodic and absolutely continuous functions on the

interval [� �; � ].
� L 1

2� , the space of all2� -periodic and Lebesgue integrable functions.
Then, we consider the nonlinear integral operators introduced in [10] (see also [2, 3] in

the case ofA = f I g, the identity matrix):

Tn;� (f ; s) =
1P

k=1
a�

nk Tk (f ; s), (2.1)

where

Tk (f ; s) =
�R

� �
K k (t; f (s � t))dt: (2.2)

We assume that f is a 2� -periodic measurable function for which the series in (2.1) is
well-de�ned. The kernel K k : R � R ! R is a family of measurable functions such that
K k (t; s) = L k (t) Hk (s) for every s; t 2 R, where L k 2 L 1

2� and the functions Hk : R ! R
with Hk (0) = 0 have the uniform Lipschitz property, i.e., there exists a constantC > 0
such that jHk (x) � Hk (y)j � C jx � yj for every x; y 2 R and k 2 N.

Then, assuming the following conditions
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(i) There exists a constantM > 0 such that sup
n;� 2 N

1P

k=1
a�

nk kL kk2� = M < 1 ;

(ii) A� lim

 
�R

� �
L k (t) dt

!

= 1 ;

(iii) for any �xed � > 0; A� lim

 
R

jt j� �
jL k (t)j dt

!

= 0 ;

(iv) lim
k!1

VJ [Gk ]
m(J ) = 0 uniformly with respect to every bounded interval J � R, where

Gk (u) := Hk (u) � u, m (J ) is the length of the interval J and VJ denotes the total
variation on J ,

we proved in [10] that, for every f 2 AC2� ,

lim
n!1

V2� [Tn;� (f ) � f ] = 0 uniformly in � 2 N (2.3)

holds, which generalizes the result in [2,3].

Remark 2.1. Our operators Tn;� in (2:1) are de�ned by using regular matrix transfor-
mations of the classical operatorsTk in (2:2) introduced by Angeloni and Vinti (see [2,3]).
Observe that conditions (i ), (ii ) and (iii ) for the operators Tk are more general than the
ones in [2,3]. However, in this subsection, we prove that it is still possible to characterize
the absolute continuity under these conditions for the operatorsTk . Furthermore, the limit
given for the sequencef Tn;� g does not need to exist for the sequencef Tkg (see Example
4:1). Of course, in order to cover the classical conditions in [2, 3] we especially use the
regular summability methods since our conditions are then satis�ed at once due to the
regularity of the methods.

We also need the following condition on the kernelL k 2 L 1
2� .

For every n; � 2 N and for all " > 0, there exists a � > 0 such that for every nonover-
lapping subintervals f [� i ; � i ]g

m
i =1 of [� �; � ],

mP

i =1
(� i � � i ) < � implies

mP

i =1

1P

k=1
a�

nk jL k (� i ) � L k (� i )j < ": (2.4)

Remark 2.2. We should note that, in particular, if A is a row �nite method and also
if L k 2 AC2� , then we immediately get (2:4). Such kernels and row �nite methods will
be given in Section4. Furthermore, if we take A = f I g, then (2:4) is equivalent to the
absolute continuity of L k . Hence, our condition (2:4) generalizes the absolute continuity
of L k by a nonnegative regular summability method.

Now we get the next lemma.

Lemma 2.3. Assume that (2:4) holds. If f 2 BV2� , then Tn;� (f ) 2 AC2� for every
n; � 2 N.

Proof. Since L k is 2� -periodic, by the substitution s � t = z we may write from (2.1)
that

Tn;� (f ; z) =
1P

k=1
a�

nk

�R

� �
L k (s � z)H k (f (z)) dz:

By assumption, for every " > 0 there exists a � > 0 such that, for every nonoverlap-
ping subintervals f [� i ; � i ]g

m
i =1 of [� �; � ], (2.4) holds whenever

P m
i =1 (� i � � i ) < � . Using

Hk (0) = 0 and the Fubini-Tonelli theorem, we get the following inequality
mP

i =1
jTn;� (f ; � i ) � Tn;� (f ; � i )j � C

mP

i =1

1P

k=1
a�

nk

�R

� �
jL k (� i � z) � L k (� i � z)j j f (z)j dz

= C
�R

� �

mP

i =1

1P

k=1
a�

nk jL k (� i � z) � L k (� i � z)j j f (z)j dz;
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where C is the Lipschitz constant of Hk . Since
P m

i =1 (� i � z � (� i � z)) < � and (2.4) is
satis�ed, we conclude that

mP

i =1
jTn;� (f ; � i ) � Tn;� (f ; � i )j � C kf k1 ";

where the symbolk�k1 denotes the usual norm onL 1
2� . The last inequality immediately

gives that Tn;� (f ) 2 AC2� . �

Then, our �rst characterization theorem is as follows.

Theorem 2.4. Let f 2 BV2� and assume that conditions(i ) � (iv ) and (2:4) hold. Then,

f 2 AC2� , lim
n!1

V2� [Tn;� (f ) � f ] = 0 uniformly in �:

Proof. The necessity immediately follows from Theorem 2.3 of [10]. For the su�ciency,
assume that

lim
n!1

V2� [Tn;� (f ) � f ] = 0

holds. Then, by Lemma 2.3, we get Tn;� f 2 AC2� . On the other hand, sinceAC2� is a
closed subspace ofBV2� with respect to variation semi-norm (see Lemma 2.1 of [14]), we
observe that f must belong to AC2� . �

2.2. Characterization in N -dimension (without periodicity) with respect
to the Lebesgue measure

In this part, we adopt Tonelli's de�nition for the N -dimensional bounded variation (see
[32]). Here we use the following notations and de�nitions.

� L 1
�
RN

�
, the space of all Lebesgue integrable functions onRN with the usual

norm k�k1.
� jx j, the Euclidean norm of the N -dimension vector x = ( x1; : : : ; xN ) 2 RN .
� For a given vector x = ( x1; x2; : : : ; xN ) 2 RN , the (N � 1) dimensional vector x0

j
is obtained from x by removing the j -th coordinate of x , which is given by

x0
j := ( x1; x2; : : : ; x j � 1; x j +1 ; : : : ; xN ) 2 RN � 1:

Then, we write x =
�
x0

j ; x j

�
.

� For an interval I =
Q N

i =1 [ai ; bi ], we denote(N � 1)-dimensional interval by I 0
j =

h
a0

j ; b0
j

i
which is obtained by deleting the j -th coordinate from I , i.e., I = [ a0

j ; b0
j ] �

[aj ; bj ], j = 1 ; : : : ; N .
� For a given function f : RN ! R, we de�ne

� j (f; I ) :=
b0

jR

a0
j

V[aj ;bj ]

h
f

�
x0

j ; �
�i

dx0
j for j = 1 ; : : : ; N;

whereV[aj ;bj ]

h
f

�
x0

j ; �
�i

is the usual one dimensional (Jordan) variation of thej -th

section of f , namely the function gj (x j ) := f
�
x0

j ; x j

�
.

� Let

� ( f; I ) :=

(
NP

j =1
� 2

j (f; I )

) 1
2

.

Then � ( f; I ) = 1 if � j (f; I ) = 1 for somej = 1 ; : : : ; N .
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� The de�nition of the variation of f on an interval I � RN is given by

VI [f ] := sup
mP

q=1
� ( f; J q) ,

where the supremum is taken over all the families ofN -dimensional subintervals
f J1; : : : ; Jm g which are partitions of I .

� Let V [f ] := sup
I � RN

VI [f ], where the supremum being taken over all the intervals

I � RN . If V [f ] < 1 , we say that a function f 2 L 1
�
RN

�
is of bounded variation

over RN

� BV
�
RN

�
, the space of all functions of bounded variation overRN . In this space,

kf kBV := V [f ] denotes the variation semi-norm off .

� AC loc

�
RN

�
, the space of all functionsf : RN ! R with locally absolutely contin-

uous in Tonelli's sense, i.e., for anyN -dimensional interval I =
Q N

j =1 [aj ; bj ] � RN

if, for every j = 1 ; : : : ; N; and for every " > 0; there exists a � > 0 such that for
almost every s0

j 2 RN � 1 and for all �nite collections of non-overlapping intervals
h
� �

j ; � �
j

i
� [aj ; bj ], � = 1 ; : : : ; � ,

�P

� =1

�
� �

j � � �
j

�
< � implies

�P

� =1

�
�
�f

�
s0

j ; � �
j

�
� f

�
s0

j ; � �
j

� �
�
� < ":

� AC
�
RN

�
:= BV

�
RN

�
\ AC loc

�
RN

�
.

Now consider the following nonlinear integral operators de�ned in [11] (see also [5, 6]
in the case ofA = f I g):

Tn;� (f ; s) =
1P

k=1
a�

nk Tk (f ; s); (2.5)

where
Tk (f ; s) =

R

RN
K k (t ; f (s � t ))dt (2.6)

We assume that f : RN ! R is measurable and bounded onRN for which the series in
(2.5) is well-de�ned. We also suppose thatK k (t ; s) : RN � R ! R satis�es K k (t ; s) =
L k (t ) Hk (s) for every t 2 RN and s 2 R, where f L kg � L 1

�
RN

�
and Hk is uniformly

Lipschitz with Hk (0) = 0 .
We know from [11] that, for a given f 2 AC

�
RN

�
, in order to get the approximation

lim
n!1

V [Tn;� (f ) � f ] = 0 uniformly in � (2.7)

we need the following conditions:

(i) 0 There exists a constant M > 0 such that sup
n;� 2 N

1P

k=1
a�

nk kL kk1 = M < 1 ;

(ii) 0 A� lim

 
R

RN
L k (t ) dt

!

= 1 ,

(iii) 0 for any �xed � > 0; A� lim

 
R

jt j� �
L k (t ) dt

!

= 0 ;

and condition (iv) stated in Subsection 2.1.
We should remark that the limit in ( 2.7) does not need to exist if we replace the sequence

f Tn;� (f )g in (2.5) with the sequencef Tk (f )g in (2.6) (see Example4.2).
To give a characterization of absolute continuity we also need the following assumption

on the kernel L k .
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For every n; � 2 N and " > 0, there exists a � > 0 such that for any N -dimensional

interval I =
Q N

i =1 [ai ; bi ] and for every collection of nonoverlapping intervals
nh

� �
j ; � �

j

io �

� =1
of the interval [aj ; bj ]

�P

� =1

�
� �

j � � �
j

�
< � implies

�P

� =1

1P

k=1
a�

nk

�
�
�L k

�
s0

j ; � �
j

�
� L k

�
s0

j ; � �
j

� �
�
� < " (2.8)

for every j = 1 ; : : : ; N .

Lemma 2.5. Assume that (2:8) holds. If f 2 BV
�
RN

�
, then Tn;� (f ) 2 AC

�
RN

�
for

every n; � 2 N.

Proof. It follows from the substitution s � t = z that

Tn;� (f ; z) =
1P

k=1
a�

nk
R

RN
L k (s � z)H k (f (z)) dz:

Using (2.8) and the Fubini-Tonelli theorem we get

�P

� =1

�
�
�Tn;� (f ;

�
s0

j ; � �
j

�
) � Tn;� (f ;

�
s0

j ; � �
j

�
)
�
�
�

� C
�P

� =1

1P

k=1
a�

nk
R

RN

�
�
�L k (s0

j � z0
j ; � �

j � zj ) � L k (s0
j � z0

j ; � �
j � zj )

�
�
� jf (z)j dz

� C
R

RN

�P

� =1

1P

k=1
a�

nk

�
�
�L k (s0

j � z0
j ; � �

j � zj ) � L k (s0
j � z0

j ; � �
j � zj )

�
�
� jf (z)j dz

< C kf k1 "

holds due to
�P

� =1

�
� �

j � zj �
�
� �

j � zj

��
< �:

This shows that Tn;� (f ) 2 AC loc

�
RN

�
. On the other hand, from Lemma 2.1 of [11] we

know that Tn;� (f ) 2 BV
�
RN

�
; and henceTn;� (f ) 2 AC

�
RN

�
. �

Then, we get the next result.

Theorem 2.6. Let f 2 BV
�
RN

�
and assume that conditions(i )0� (iii )0, (iv ) and (2:8)

hold. Then,

f 2 AC
�
RN

�
, lim

n!1
V [Tn;� (f ) � f ] = 0 uniformly in �:

Proof. The necessity part is clear from Theorem 2.3 of [11]. Now assume that

lim
n!1

V [Tn;� (f ) � f ] = 0 uniformly in �

holds. We know from [14] that AC
�
RN

�
is a closed subspace ofBV

�
RN

�
with respect to

variation semi-norm. Combining this fact with Lemma 2.5, one can easily conclude that
f 2 AC

�
RN

�
. �

2.3. Characterization in N -dimension (without periodicity) with respect
to the Haar measure

In this part, we use the following notations and de�nitions. But now, we consider the
Haar measure instead of the Lebesgue measure in the de�nition of the integral operators.
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� The Haar measure of a setX � RN
+ is de�ned by

� (X ) =
R

X
d� :=

R

X

dt
ht i

,

where� represents the Haar measure andht i := t1t2 : : : tN : We remark that (Haar)
measure of a setX is invariant under multiplication.

� L 1
�

�
RN

+

�
, the space of all functionsf : RN

+ ! R such that

kf kL 1
�

:=
R

RN
+

jf (t )j
dt
ht i

< 1 :

� RN
+ := f (x1; : : : ; xN ) : x i > 0 for i = 1 ; : : : ; N g, 1 = (1 ; : : : ; 1) is the unit vector of

RN
+ and

D
x0

j

E
:= � N

i =1 ;i 6= j x i .

� V [f ] denotes the bounded variation off 2 L 1
�

�
RN

+

�
.

� BV�

�
RN

+

�
, the space of all functionsf 2 L 1

�

�
RN

+

�
such that V [f ] < 1 .

� AC loc

�
RN

+

�
, the space of all functionsf : RN

+ ! R such that, for any N -dimension

interval I =
Q N

i =1 [ai ; bi ] � RN
+ and for every i = 1 ; : : : ; N; the sectiongj : [aj ; bj ] !

R is absolutely continuous for almost all vectorsx0
j 2 [a0

j ; b0
j ].

� For a given " > 0, assume that
�P

� =1

�
�
�f

�
s0

j ; � �
j

�
� f

�
s0

j ; � �
j

� �
�
� < "

holds for almost everys0
j 2 RN � 1

+ and for all �nite collections of non-overlapping

interval
h
� �

j ; � �
j

i
� [aj ; bj ] ; � = 1 ; : : : ; �; whenever

�P

� =1

�
log

�
� �

j

�
� log

�
� �

j

��
< �:

In this case, we say that f is log-absolutely continuous onRN
+ . From Proposi-

tion 3.5 of [5], we see that the concepts of absolute continuity and log-absolute
continuity are equivalent on RN

+ .

� AC �

�
RN

+

�
:= BV�

�
RN

+

�
\ AC loc

�
RN

+

�
.

We now consider the following Mellin-type operators:

Tn;� (f ; s) =
1P

k=1
a�

nk Tk (f ; s); (2.9)

where

Tk (f ; s) =
R

RN
+

K k (t ; f (st ))
dt

< t >
: (2.10)

In ( 2.10), st := ( s1t1; : : : ; sN tN ) and f is essentially bounded with respect to the Haar
measure. We should note that these operators were de�ned in [9], which generalize the
ones in [6]. Here K k (t ; s) : RN

+ � R ! R, K k (t ; s) = L k (t ) Hk (s) for every t 2 RN
+ and

s 2 R such that L k 2 L 1
�

�
RN

+

�
and Hk is uniformly Lipschitz with Hk (0) = 0 :

In [9] we proved that, for every f 2 AC �

�
RN

+

�
,

lim
n!1

V [Tn;� (f ) � f ] = 0 uniformly in � (2.11)

provided that the following conditions hold:

(i) 00There exists a constantA > 0 such that sup
n;� 2 N

1P

k=1
a�

nk kL kkL 1
�

= A < 1 ;
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(ii) 00A� lim

0

@
R

RN
+

L k (t ) dt
ht i

1

A = 1 ;

(iii) 00 for any �xed 0 < � < 1; A� lim

 
R

j1� t j>�
L k (t ) dt

ht i

!

= 0 ,

and the same condition (iv) in Subsection2.1.
Note that the limit in ( 2.11) does not need to be valid for the sequencef Tk (f )g in

(2.10).
For the characterization theorem, we also need the following assumption.
For very n; � 2 N and for every " > 0 there exists a � > 0 such that for any N -

dimensional interval I =
Q N

i =1 [ai ; bi ] � RN
+ ; and for every collection of non-overlapping

intervals
nh

� �
j ; � �

j

io �

� =1
of the interval [aj ; bj ],

�P

� =1

�
�
� log

�
� �

j

�
� log

�
� �

j

� �
�
� < � implies

�P

� =1

1P

k=1
a�

nk

�
�
�L k

�
s0

j ; � �
j

�
� L k

�
s0

j ; � �
j

� �
�
� < " (2.12)

for every j = 1 ; : : : ; N:

Remark 2.7. Using the subintervals ofRN
+ instead of RN , consider the assumption(2:8).

Then, following the proof of Proposition 3:5 in [5], one can show that, for a given kernel
L k , conditions (2:8) and (2:12) are equivalent.

Lemma 2.8. Assume that condition (2:12) (or, (2:8)) holds. If f 2 BV�

�
RN

+

�
, then

Tn;� (f ) 2 AC �

�
RN

+

�
for every n; � 2 N.

Proof. From Proposition 2.2 of [9] we immediately see thatTn;� (f ) 2 BV�

�
RN

+

�
. So, by

the equivalence of absolute continuity and log-absolute continuity, it is enough to prove
that, for a given f 2 BV�

�
RN

+

�
, Tn;� (f ) is log-absolutely continuous on every interval

I =
Q N

i =1 [ai ; bi ] of RN
+ . Now for a given " > 0, �x a collection

nh
� �

j ; � �
j

io �

� =1
of non-

overlapping intervals in [aj ; bj ] such that

�P

� =1

�
log

�
� �

j

�
� log

�
� �

j

��
< �;

where the number � comes from condition(2:12). Now letting st = z, we get

Tn;� (f ; s) =
1P

k=1
a�

nk
R

RN
+

L k

�
z
s

�
Hk (f (z))

dz
hzi

;

where z
s :=

�
z1
s1

; : : : ; zN
sN

�
. Since

�P

� =1

�
log

�
� �

j

�
� log

�
� �

j

��
=

�P

� =1

�
�
� log

�
zj =� �

j

�
� log

�
zj =� �

j

� �
�
� < �;
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it follows from the triangle inequality, condition ( 2.12) and the Fubini-Tonelli theorem
that

�P

� =1

�
�
�Tn;� (f ; s0

j ; � �
j ) � Tn;� (f ; s0

j ; � �
j )

�
�
�

� C
�P

� =1

1P

k=1
a�

nk
R

RN
+

�
�
�
�L k

�
z0

j
s0

j
; zj

� �
j

�
� L k

�
z0

j
s0

j
; zj

� �
j

� �
�
�
� jf (z)j dz

hzi

= C
R

RN
+

�P

� =1

1P

k=1
a�

nk

�
�
�
�L k

�
z0

j
s0

j
; zj

� �
j

�
� L k

�
z0

j
s0

j
; zj

� �
j

� �
�
�
� jf (z)j dz

hzi

� "C kf kL 1
�

;

which completes the proof. �

Theorem 2.9. Let f 2 BV�

�
RN

+

�
and assume that conditions(2:12); (i )00� (iii )00and

(iv ) hold. Then

f 2 AC �

�
RN

+

�
, lim

n!1
V [Tn;� (f ) � f ] = 0 uniformly in �:

Proof. If f 2 AC �

�
RN

+

�
, then by Theorem 2.3 of [9] we get

lim
n!1

V [Tn;� (f ) � f ] = 0 uniformly in �:

Conversely, if we assumelimn!1 V [Tn;� (f ) � f ] = 0 ; sinceAC �

�
RN

+

�
is a closed subspace

of BV�

�
RN

�
with respect to variation semi-norm (see [6]), we get from Lemma 2.8 that

f 2 AC �

�
RN

+

�
. �

3. Characterizations of uniform continuity

In this section, for the characterization of uniform continuity we use the supremum
norm (uniform norm) instead of variation semi-norm. We consider the following three
cases.

3.1. Characterization in one dimension with periodicity

We �rst recall some concepts.
� As usual, C2� denotes the space of all2� -periodic and continuous functions with

the usual supremum normk�k2�
� B2� denotes the space of all2� -periodic and bounded functions.

For the nonlinear operators given by (2.1), in addition to the conditions (i ) � (iii ) stated
in Subsection2.1. it is needed to replace the condition(iv ) with the following

(iv) 0 lim
k!1

kGkkJ = 0 for every bounded interval J � R, where k�kJ denotes the supre-

mum norm on the interval J . Note that, this convergence does not need to be
uniform with respect to J � R.

We also assume the next condition.

For every n; � 2 N and for all " > 0 there exists a� > 0 such that

jx � yj < � implies
1P

k=1
a�

nk jL k (x) � L k (y)j < ": (3.1)

Lemma 3.1. Assume that (3:1) holds. If f 2 B2� \ L 1
2� , then Tn;� (f ) 2 C2� for every

n; � 2 N.
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Proof. As in the proof of Lemma 2.3, the operators (2.1) can be written as follows:

Tn;� (f ; z) =
1P

k=1
a�

nk

�R

� �
L k (s � z)H k (f (z)) dz:

Using Hk (0) = 0 it is not hard to see that

jTn;� (f ; y) � Tn;� (f ; x)j � C
1P

k=1
a�

nk

�R

� �
jL k (y � z) � L k (x � z)j j f (z)j dz

= C
�R

� �

1P

k=1
a�

nk jL k (y � z) � L k (x � z)j j f (z)j dz:

Then, by (3:1), for all x; y satisfying

jx � yj = jx � z � (y � z)j < �

we get
jTn;� (f ; y) � Tn;� (f ; x)j � C kf k1 ";

which gives the proof. �

The characterization theorem is the following.

Theorem 3.2. Let f 2 B2� \ L 1
2� and assume that conditions(3:1), (i ) � (iii ) and (iv )0

hold. Then,
f 2 C2� , lim

n!1
kTn;� (f ) � f k2� = 0 uniformly in �:

Proof. The necessity is clear from Theorem 3.3 of [10]. The su�ciency part follows from
Lemma 3.1 and the fact that C2� is a closed subspace ofB2� . �

3.2. Characterization of uniform continuity

In this part, by BUC
�
RN

�
we denote the space of all bounded and uniformly continuous

functions on RN endowed with the supremum normk�k1 . Then using the operators (2.5)
we give a characterization of uniform continuity. Besides the conditions(i )0� (iii )0 given
in Subsection2.2, we need(iv )0 in Subsection3.1. We also assume the next property.

For every n; � 2 N and for all " > 0 there exists a� > 0 such that

jx � y j < � implies
1P

k=1
a�

nk jL k (x ) � L k (y)j < ": (3.2)

Lemma 3.3. Assume that (3:2) holds. If f 2 B
�
RN

�
\ L 1

�
RN

�
, then Tn;� (f ) 2

BUC
�
RN

�
for every n; � 2 N.

Proof. From the proof of Lemma 2.5, we get

Tn;� (f ; z) =
1P

k=1
a�

nk
R

RN
L k (s � z)H k (f (z)) dz:

SinceHk (0) = 0 , by the Fubini-Tonelli theorem, the inequality

jTn;� (f ; y) � Tn;� (f ; x )j � C
1P

k=1
a�

nk
R

RN
jL k (y � z) � L k (x � z)j j f (z)j dz

= C
R

RN

1P

k=1
a�

nk jL k (y � z) � L k (x � z)j j f (z)j dz

holds. Considering the assumption, we observe that

jTn;� (f ; y) � Tn;� (f ; x )j � C kf k1 "

wheneverjx � y j = jx � z � (y � z)j < �: Here kf k1 < 1 sincef 2 L 1
�
RN

�
: And �nally

by Lemma 3.1 of [11], we know that Tn;� (f ) 2 B
�
RN

�
. Hence, the proof is completed. �



1560 I. Aslan, O. Duman

Theorem 3.4. Let f 2 B
�
RN

�
\ L 1

�
RN

�
and assume that conditions(3:2) and (i )0� (iv )0

hold. Then,

f 2 BUC
�
RN

�
, lim

n!1
kTn;� (f ) � f k1 = 0 uniformly in �:

Proof. For the necessity, apply Theorem 3.3 of [11]. For the su�ciency, use Lemma 3.3
and the fact that BUC

�
RN

�
is a closed subspace ofB

�
RN

�
. �

3.3. Characterization of log-uniform continuity

Some notations and de�nitions used in this part are as follows.
� Let a function f : RN

+ ! R be given. We say that f is log-uniformly continuous
on RN

+ if, for every " > 0 there is a � > 0 such that, for all x ; y 2RN
+ satisfying

jlogx � logy j < � , jf (x ) � f (y)j < " holds, where logx := (log x1; : : : ; logxN ).
The space of all bounded and log-uniformly continuous functions onRN

+ is denoted

by BUClog

�
RN

+

�
, which is endowed with the usual supremum normk�k1 .

� By B
�
RN

+

�
we denote the space of all bounded functions onRN

+ .

Notice that, in general, log-uniform continuity and uniform continuity are di�erent con-
cepts onRN

+ ; however they are equivalent on a boundedN -dimensional interval
Q N

i =1 [ai ; bi ]
of RN

+ , where bi � ai > 0 for all i = 1 ; : : : ; N .
We use the assumptions(i )00� (iii )00in Subsection2.3 and (iv )0 in Subsection3.1. We

also need the next condition.
For every n; � 2 N and for all " > 0, there exists � > 0 such that

jlogx � logy j < � implies
1P

k=1
a�

nk jL k (x ) � L k (y)j < ": (3.3)

For the characterization theorem, we �rst prove the following two lemmas.

Lemma 3.5. Assume that (3:3) holds. If f 2 B
�
RN

+

�
\ L 1

�

�
RN

+

�
, then Tn;� (f ) 2

BUC
�
RN

+

�
for every n; � 2 N.

Proof. After writing the operators ( 2.9) in the following form

Tn;� (f ; s) =
1P

k=1
a�

nk
R

RN
+

L k

�
z
s

�
Hk (f (z))

dz
hzi

;

we may write that

jTn;� (f ; y) � Tn;� (f ; x )j � C
1P

k=1
a�

nk
R

RN
+

�
�
�
�L k (

z
y

) � L k

�
z
x

� �
�
�
� jf (z)j

dz
hzi

= C
R

RN
+

1P

k=1
a�

nk

�
�
�
�L k (

z
y

) � L k

�
z
x

� �
�
�
� jf (z)j

dz
hzi

Then assumption (3.3) gives that, for a given " > 0, there is a � > 0 such that, for all x ; y
satisfying jlogx � logy j =

�
�
� logz

y � log z
x

�
�
� < � , we get

jTn;� (f ; y) � Tn;� (f ; x )j � C kf kL 1
�

":

Combining this with Proposition 3.1 of [9], the proof is completed. �

Lemma 3.6. BUClog

�
RN

+

�
is a closed subspace ofB

�
RN

+

�
with respect to the supremum

norm.

Proof. It is clear. �
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Figure 1. The kernel function L k given by (4.1) for k = 2 ; 4; 6

Theorem 3.7. Let f 2 B
�
RN

+

�
\ L 1

�

�
RN

+

�
and assume that(3:3); (i )00� (iii )00and (iv )0

hold. Then,

f 2 BUClog

�
RN

+

�
, lim

n!1
kTn;� (f ) � f k1 = 0 uniformly in �:

Proof. Use Theorem 3.2 of [9] and Lemmas3.5 and 3.6. �

4. Applications and special cases

In this section, we give some suitable kernel functions satisfying our assumptions and
also discuss some special cases of the characterization theorems.

Example 4.1. We �rst consider one dimensional case with periodicity. In the de�nition
of the integral operators (2:1) and (2:2), take A = f C1g = f cnk g (Cesàro method) given
by

cnk :=
� 1

n ; k = 1 ; 2; : : : ; n
0; otherwise

and also de�ne the 2� -periodic kernel L k by

L k (t) :=

8
>><

>>:

�
(� 1)k + 1

�
2k sin

�
3kt
5

�
; if 0 � t � 5�

3k�
(� 1)k + 1

�
17
10k sin

�
3kt
5

�
; if � 5�

3k � t < 0
0; if � � j t j > 5�

3k ;

(4.1)

which is extended by periodicity to the whole real line (see Figure1).
In this case, observe thatL k satis�es our conditions (i)-(iii) and (2:4). Furthermore,

some suitable Lipschitz functionsHk satisfying (iv) may be found in the papers [3,4,6,9�
11]. Hence, the corresponding operators are given by

Tn := Tn;� =
1
n

nP

k=1
Tk

where

Tk (f ; s) =
�R

� �
L k (t)Hk (f (s � t))dt: (4.2)

Theorem 2:4 implies that

f 2 AC2� , lim
n!1

V2�

�
T1(f ) + T2(f ) + : : : + Tn (f )

n
� f

�
= 0 : (4.3)
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Figure 2. The kernel functions L k given by (4.4) for k = 2 ; 4; 6

The limit on the right-hand side of (4:3) shows that the arithmetic mean of the sequence
f Tk (f )g in (4:2) converges tof with respect to the variation semi-norm. However, one
can observe that, for any nonconstant functionf , the sequencef Tk (f )g itself cannot be
convergent to f with respect to the variation semi-norm. Indeed, it follows from (4:1) and
(4:2) that L 2k� 1(t) = 0 , which implies T2k� 1(f ) = 0 for all k 2 N. Hence, we immediately
get

lim
k!1

V2� [T2k� 1(f ) � f ] = V2� [f ] 6= 0

for any nonconstant function f . So, the characterization in (4:3) is still valid although the
sequencef Tk (f )g in (4:2) does not converge tof with respect to the variation semi-norm.

Example 4.2. Now take A = F = f c�
nk g (almost convergence method) given by

c�
nk :=

� 1
n ; k = �; � + 1 ; : : : ; � + n � 1
0; otherwise,

and de�ne the kernel L k of two variables by

L k (x; y) =

( �
(� 1)k + 1

�
3k3

�

�
1
k �

p
x2 + y2

�
; if

p
x2 + y2 � 1

k

0; if
p

x2 + y2 > 1
k ;

(4.4)

which is indicated in Figure 2.
Then, it is easy to check that all conditions in Subsection2:2 hold. Hence, for the

corresponding operators

Tn;� =
1
n

� + n� 1P

k= �
Tk ;

where

Tk (f ; s; t) =
1R

�1

1R

�1
L k (x; y)Hk (f (s � x; t � y))dxdy; (4.5)

it follows from Theorem 2:6 that

f 2 AC
�
RN

�
, lim

n!1
V

�
T� (f ) + T� +1 (f ) + : : : + T� + n� 1(f )

n
� f

�
= 0 ; (4.6)
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Figure 3. The kernel functions L k given by (4.7) for k = 2 ; 4; 6

uniformly in � . As in Example 4:1, it is easy to see that

lim
k!1

V [T2k� 1(f ) � f ] = V [f ] 6= 0

for any nonconstant function f . So, the characterization in (4:6) is still valid although the
sequencef Tk (f )g in (4:5) does not converge tof with respect to the variation semi-norm.

Example 4.3. Finally, take again A = F and de�ne the kernel L k by

L k (x; y) :=

8
>>>>>><

>>>>>>:

3k3xy
�

q
1

k2 � (x � 1)2 � (y � 1)2 ;

q
(x � 1)2 + ( y � 1)2 � 1

k
and k = m2;

3k3xy
2�

q
1

k2 � (x � 1)2 � (y � 1)2 ;

q
(x � 1)2 + ( y � 1)2 � 1

k
and k 6= m2

0 ; otherwise,

(4.7)

which is indicated in Figure 3.
Then, for the corresponding operators

Tn;� =
1
n

� + n� 1X

k= �

Tk ;

where

Tk (f ; s; t) =
1R

0

1R

0
L k (x; y)Hk (f (s � x; t � y))

dxdy
xy

; (4.8)

we may write from Theorem 2:9 that

f 2 AC �

�
RN

+

�
, lim

n!1
V

�
T� (f ) + T� +1 (f ) + : : : + T� + n� 1(f )

n
� f

�
= 0 ;

uniformly in � .

One can also �nd suitable applications and some special cases (with respect to the
supremum norm) of the results in Section3.
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Abstract

In this paper we show that the system of di�erence equations

xn = ayn� k +
dyn� kxn� (k+ l )

bxn� (k+ l ) + cyn� l
; yn = �x n� k +

�x n� kyn� (k+ l )

�y n� (k+ l ) + x n� l
;

where n 2 N0; k and l are positive integers, the parametersa, b, c, d, � , � ,  , � are real
numbers and the initial values x � j , y� j , j = 1; k + l, are real numbers, can be solved
in the closed form. We also determine the asymptotic behavior of solutions for the case
l = 1 and describe the forbidden set of the initial values using the obtained formulas. Our
obtained results signi�cantly extend and develop some recent results in the literature.

Mathematics Subject Classi�cation (2010). 39A10, 39A20, 39A23, 11B39

Keywords. system of di�erence equations, asymptotic behavior, Fibonacci sequence,
forbidden set

1. Introduction and preliminaries

For the past two decades there has been an intense interest in nonlinear di�erence
equations, see [2,5� 7,18,36,37,40,42,44]. In the meantime, the two-dimensional or three-
dimensional systems of these equations have become the center of interest of researchers.
See, for example, [9, 16, 17, 22, 25, 34, 38, 43, 45, 46, 48]. Theoretically, it is very important
to characterize the behavior of the solutions of these equations and systems. Although
many methods are proposed by researchers, the most basic method to do this is to �nd a
closed formula of the solution of the equation or system and analyze it. In [21], McGrath
and Teixeira studied the equation

xn+1 =
axn� 1 + bxn

cxn� 1 + dxn
xn ; n 2 N0; (1.1)
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Email addresses: mervekara@aksaray.edu.tr (M. Kara), yyazlik@nevsehir.edu.tr (Y. Yazlik),

dttollu@konya.edu.tr (D.T. Tollu)
Received: 25.10.2018; Accepted: 22.11.2019
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where the parametersa, b, c, d, and the initial values are real numbers. The authors solved
Eq. (1.1) and investigated the existence and behavior of the solution of Eq. (1.1) by using
some known results. In [39], Tollu et al. considered the following di�erence equations

xn = �x n� k +
�x n� kxn� (k+ l )

�x n� (k+ l ) + x n� l
; n 2 N0; (1.2)

where k and l are �xed natural numbers, � , � ,  , � 2 R, and the initial values x � i ,
i = 1; k + l, are real numbers. The authors showed that Eq. (1.2) is solvable in closed
form and presented formulas for the solutions. They also studied the long-term behavior
of the solutions of Eq. (1.2). Some particular cases of the extension of Eq. (1.2) have been
studied recently in papers [11� 14, 33]. More precisely, Eq. (1.2) in the case � = 0 ; � =
1; � = 1 ;  = � 1 was studied in [11, 12] and in [33] the case� = 0 ; � = 1 was studied,
while in [13, 14] the casek = 1 ; l = 1 and k = 2 ; l = 2 were studied. Eq. (1.1) and Eq.
(1.2) actually are particular cases of the higher-order di�erence equation

xn

xn� k
= f

�
xn� l

xn� k� l

�
; n 2 N0; (1.3)

where k and l are �xed natural numbers. If the equation yn = f (yn� l ) ; n 2 N0; is a
solvable type, then Eq. (1.3) is solvable, too.
On the other hand, in [41], Eq. (1.2) in the case � = 0 ; � = 1 ; � = � 1;  = � 1 was
extended to the following two-dimensional system of di�erence equation

xn+1 =
ynxn� 1

� xn� 1 � yn
; yn+1 =

xnyn� 1

� yn� 1 � xn
; n 2 N0; (1.4)

with real nonzero initial values x � i ; y� i , for i = 0 ; 1, such that some of their solutions
are associated to Fibonacci numbers and some of their solution formulas were proved by
induction. However, the formulas have not been con�rmed by some theoretical explana-
tions.

In this paper, we give some theoretical explanations for the formulas of solutions of the
di�erence equations system given in (1.4). Moreover, we show that the following more
general di�erence equation system

xn = ayn� k +
dyn� kxn� (k+ l )

bxn� (k+ l ) + cyn� l
; yn = �x n� k +

�x n� kyn� (k+ l )

�y n� (k+ l ) + x n� l
; n 2 N0; (1.5)

where k and l are positive integers,a, b, c, d, � , � ,  , � 2 R, and the initial values x � j ,
y� j , j = 1; k + l, are real numbers, can be solved closed form. Also, we investigate some
particular cases of system (1.5) and give a study of the long-term behavior of its solutions
for the casel = 1 . Finally, we also give natural explanation for the formulas presented in
[41].

For more works on the topic, see, for example, [3, 4, 8, 10, 23, 24, 26� 32, 35, 47] and the
references therein. Also, see the books [1,15,20].

Now, we should recall that the Fibonacci sequencef Fng1
n=0 is de�ned by

Fn+2 = Fn+1 + Fn ; n 2 N0; (1.6)

with the initial values F0 and F1. Considering [19], the characteristic equation of (1.6)
can be clearly obtained as of the formx2 � x � 1 = 0 having the roots � = 1+

p
5

2 and

� = 1�
p

5
2 . Thus, the Binet's Formula for Fibonacci sequence,Fn = � n � � n

� � � , can be thought
as a solution of Fibonacci sequence. Also, it is obtained to extend negatively subscripted
Fibonacci sequence as

F� n = F� n+2 � F� n+1 = ( � 1)n+1 Fn ; n 2 N0: (1.7)
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2. Solvability of system ( 1.5)

In this section we show that the system (1.5) is solvable in closed form. First, we write
the system as follows:

xn

yn� k
=

ac yn � l
xn � ( k + l )

+ ab+ d

c yn � l
xn � ( k + l )

+ b
;

yn

xn� k
=

� xn � l
yn � ( k + l )

+ �� + �

 xn � l
yn � ( k + l )

+ �
; n 2 N0:

Putting

un =
xn

yn� k
; vn =

yn

xn� k
; n � � l; (2.1)

in the last expressions, we get the system of equations

un =
acvn� l + ab+ d

cvn� l + b
; vn =

�u n� l + �� + �
u n� l + �

; n 2 N0; (2.2)

where the parametersa; b; c; d; �; �; ; � , in the new variablesun and vn . By using the
�rst equation of ( 2.2) in its second equation and its second equation in its �rst equation,
we obtain the independent equations

un =
(ac� + ab + d ) un� 2l + ac�� + ac� + ab� + d�

(c� + b ) un� 2l + c�� + c� + b�
; n � l; (2.3)

and

vn =
(ac� + c�� + c� ) vn� 2l + ab� + �d + ��b + �b

(ac + �c ) vn� 2l + ab + d + b�
; n � l: (2.4)

If we apply the decomposition of indexesn ! 2lm + i , for m � � 1 and i 2 f l; l +1 ; : : : ; 3l �
1g, to (2.3) and (2.4), they become

u2lm + i =
(ac� + ab + d ) u2l(m� 1)+ i + ac�� + ac� + ab� + d�

(c� + b )u2l(m� 1)+ i + c�� + c� + b�
; m 2 N0; (2.5)

v2lm + i =
(ac� + c�� + c� )v2l(m� 1)+ i + ab� + �d + ��b + �b

(ac + �c )v2l(m� 1)+ i + ab + d + b�
; m 2 N0: (2.6)

Let u(i )
m = u2lm + i ; v(i )

m = v2lm + i , for some m � � 1 and i 2 f l; l + 1 ; : : : ; 3l � 1g: Then
equations in (2.5)-(2.6) can be written as the following:

u(i )
m =

(ac� + ab + d ) u(i )
m� 1 + ac�� + ac� + ab� + d�

(c� + b ) u(i )
m� 1 + c�� + c� + b�

; m 2 N0; (2.7)

v(i )
m =

(ac� + c�� + c� ) v(i )
m� 1 + ab� + �d + ��b + �b

(ac + �c ) v(i )
m� 1 + ab + d + b�

; m 2 N0; (2.8)

which is essentially in the form of Riccati di�erence equation. If we use the change of
variables

u(i )
m =

ac� + ab + d + c�� + c� + b�
c� + b

rm �
c�� + c� + b�

c� + b
; m � � 1; (2.9)

where c� + b 6= 0 , in Eq. (2.7) and the change of variables

v(i )
m =

ac� + ab + d + c�� + c� + b�
ac + �c

sm �
ab + d + b�

ac + �c
; m � � 1; (2.10)

where ac + �c 6= 0 , in Eq. (2.8), then (2.7) and (2.8) are transformed into the following
equations:

rm = 1 �
R

rm� 1
; sm = 1 �

R
sm� 1

; m 2 N0; (2.11)
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whereac� + ab + d + c�� + c� + b� 6= 0 and R = cd�
(ac� + ab + d + c�� + c� + b� )2 , respectively.

The equations in (2.11) can be transformed into the following equations:

zm+1 = zm � Rzm� 1; m 2 N0; (2.12)

bzm+1 = bzm � Rbzm� 1; m 2 N0; (2.13)

by means of the changes of variablesrm = zm +1
zm

with the initial values z� 1 = 1 and

z0 = r � 1 and sm = bzm +1

bzm
with the initial values bz� 1 = 1 and bz0 = s� 1, respectively. (2.12)

and (2.13) are in the same form and have the characteristic equation� 2 � � + R = 0 .
If � 1 and � 2 are the roots of the characteristic equations, namely� 1 = 1+

p
1� 4R
2 and

� 2 = 1�
p

1� 4R
2 , the general solutions of equations in (2.12) and (2.13) are

zm =

8
<

:

(� 1 r � 1 � R)� m
1 � (� 2 r � 1 � R)� m

2
� 1 � � 2

if R 6= 1
4 ;�

2r � 1+(2 r � 1 � 1)m
2

� �
1
2

� m
if R = 1

4 ;
m � � 1; (2.14)

bzm =

8
<

:

(� 1s� 1 � R)� m
1 � (� 2s� 1 � R)� m

2
� 1 � � 2

if R 6= 1
4 ;�

2s� 1+(2 s� 1 � 1)m
2

� �
1
2

� m
if R = 1

4 ;
m � � 1; (2.15)

where R = cd�
(ac� + ab + d + c�� + c� + b� )2 . By substituting ( 2.14) into rm = zm +1

zm
and (2.15)

into sm = bzm +1

bzm
, we have

rm =

8
<

:

(� 1 r � 1 � R)� m +1
1 � (� 2 r � 1 � R)� m +1

2
(� 1 r � 1 � R)� m

1 � (� 2 r � 1 � R)� m
2

if R 6= 1
4 ;

2r � 1+(2 r � 1 � 1)(m+1)
4r � 1+(4 r � 1 � 2)m if R = 1

4 ;
m � � 1; (2.16)

sm =

8
<

:

(� 1s� 1 � R)� m +1
1 � (� 2s� 1 � R)� m +1

2
(� 1s� 1 � R)� m

1 � (� 2s� 1 � R)� m
2

if R 6= 1
4 ;

2s� 1+(2 s� 1 � 1)(m+1)
4s� 1+(4 s� 1 � 2)m if R = 1

4 ;
m � � 1; (2.17)

respectively. Consequently, we get

u(i )
m =

8
>>><

>>>:

A
B 1

(� 1B 1u( i )
� 1+ � 1C1 � RA )� m +1

1 � (� 2B 1u( i )
� 1+ � 2C1 � RA )� m +1

2

(� 1B 1u( i )
� 1+ � 1C1 � RA )� m

1 � (� 2B 1u( i )
� 1+ � 2C1 � RA )� m

2

� C1
B 1

if R 6= 1
4 ;

A
B 1

�
2B 1u( i )

� 1+2 C1+(2 B 1u( i )
� 1+2 C1 � A )( m+1)

4B 1u( i )
� 1+4 C1+(4 B 1u( i )

� 1+4 C1 � 2A)m

�
� C1

B 1
if R = 1

4 ;
(2.18)

and

v(i )
m =

8
>>><

>>>:

A
B 2

(� 1B 2v( i )
� 1+ � 1C2 � RA )� m +1

1 � (� 2B 2v( i )
� 1+ � 2C2 � RA )� m +1

2

(� 1B 2v( i )
� 1+ � 1C2 � RA )� m

1 � (� 2B 2v( i )
� 1+ � 2C2 � RA )� m

2

� C2
B 2

if R 6= 1
4 ;

A
B 2

�
2B 2v( i )

� 1+2 C2+(2 B 2v( i )
� 1+2 C2 � A )( m+1)

4B 2v( i )
� 1+4 C2+(4 B 2v( i )

� 1+4 C2 � 2A)m

�
� C2

B 2
if R = 1

4 ;
(2.19)

and so

u2lm + i =

8
><

>:

A
B 1

G1 � m +1
1 � G2 � m +1

2
G1 � m

1 � G2 � m
2

� C1
B 1

if R 6= 1
4 ;

A
B 1

�
H 1+( H 1 � A )( m+1)
2H 1+(2 H 1 � 2A)m

�
� C1

B 1
if R = 1

4 ;
(2.20)

and

v2lm + i =

8
><

>:

A
B 2

K 1 � m +1
1 � K 2 � m +1

2
K 1 � m

1 � K 2 � m
2

� C2
B 2

if R 6= 1
4 ;

A
B 2

�
H 2+( H 2 � A )( m+1)
2H 2+(2 H 2 � 2A)m

�
� C2

B 2
if R = 1

4 ;
(2.21)

whereA = ac� + ab + d + c�� + c� + b� , B1 = c� + b , C1 = c�� + c� + b� , B2 = ac + �c ,
C2 = ab + d + �b , G1 = � 1B1

x i � 2l
yi � 2l � k

+ � 1C1 � RA, G2 = � 2B1
x i � 2l

yi � 2l � k
+ � 2C1 � RA,
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K 1 = � 1B2
yi � 2l

x i � 2l � k
+ � 1C2 � RA, K 2 = � 2B2

yi � 2l
x i � 2l � k

+ � 2C2 � RA, H1 = 2B1
x i � 2l

yi � 2l � k
+ 2C1,

H2 = 2B2
yi � 2l

x i � 2l � k
+ 2C2 for i 2 f l; l + 1 : : : ; 3l � 1g. From (2.1) we have that

xn = unyn� k = unvn� kxn� 2k ; yn = vnxn� k = vnun� kyn� 2k ; n � k � l; (2.22)

x2km + i = u2km + i y2km + i � k = u2km + i v2km + i � kx2k(m� 1)+ i ; m 2 N0; (2.23)

y2km + i = v2km + i x2km + i � k = v2km + i u2km + i � ky2k(m� 1)+ i ; m 2 N0; (2.24)

from which it follows that

x2km + i = x i � 2k

mY

j =0

u2kj + i v2kj + i � k ; (2.25)

and

y2km + i = yi � 2k

mY

j =0

v2kj + i u2kj + i � k ; (2.26)

for every m 2 N0 and i = k � l; 3k � l � 1. Since every non-negative integer can be written
in the form lm 1 + j , where m1 2 N0 and j 2 f 0; 1; : : : ; l � 1g, we get that

x2klm 1+2 kj + i = x2kj + i � 2k

lm 1Y

s=0

u2ks+2 kj + i v2ks+2 kj + i � k ; m1 2 N0; (2.27)

y2klm 1+2 kj + i = y2kj + i � 2k

lm 1Y

s=0

v2ks+2 kj + i u2ks+2 kj + i � k ; m1 2 N0; (2.28)

where j 2 f 0; 1; : : : ; l � 1g and i = k � l; 3k � l � 1.

By the following theorem, we characterize the forbidden set of the initial values for the
system (1.5).

Theorem 2.1. The forbidden set of the initial values for system (1.5) is the union of two
sets n �!

X : x � j = 0 or y� j = 0 , j = 1; k
o

and

[

m2 N0

k+ l[

j =1

n �!
X :

yj � l

x j � k� l
= ( f � g) � m

�
�

b
c

�
or

x j � l

yj � k� l
= ( g � f ) � m (K 1)

or (g � f ) � m
�

�
�


�
or (f � g) � m (K 2)

o
;

where
�!
X = ( x � k� l ; x � k� l+1 ; : : : ; x � 1; y� k� l ; y� k� l+1 ; : : : ; y� 1), K 1 = � b� + c�� + c�

b + c� ,

K 2 = � b� + ab + d
c� + ac .

Proof. Let (xn ; yn )n�� k� l be a solution of the system (1.5). If x � j = 0 or y� j = 0 for
some j = 1; k, then xn cannot be calculated after a term yn0 , n0 2 N0. For example,
if x � k = 0 , then y0 = 0 , and so x l cannot be calculated. For the dual of this case, the
result is same, too. That is, if y� k = 0 , then x0 = 0 , and soyl cannot be calculated. For
the other initial values, the case is not same. Because, ifx � j = 0 or y� j = 0 for some
j = k + 1 ; k + l, then xn 6= 0 , yn 6= 0 for n � 0. So, we incorporate the set

n �!
X : x � j = 0 or y� j = 0 ; j = 1; k

o

in the forbidden set. Now, we suppose thatxn 6= 0 and yn 6= 0 . The solution (xn ; yn )n�� k� l
of the system (1.5) is not de�ned if and only if bxn� (k+ l )+ cyn� l = 0 and �y n� (k+ l )+ x n� l =
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0 which correspond to the statements yn � l
xn � k � l

= � b
c and xn � l

yn � k � l
= � �

 for n � � k � l ,
respectively. Therefore, by taking into account (2.1), we have

vn� l = �
b
c

and un� l = �
�


(2.29)

for n 2 N0. Now, we again consider the system (2.2) and the functions

g(t) =
act + ab+ d

ct + b
; f (t) =

�t + �� + �
t + �

which correspond to the equations of (2.2). Hence, we can describe the solutions of (2.7)
and (2.8) as follows:

v(i )
2m� 1 = ( f � g)m

�
v(i )

� 1

�
; (2.30)

v(i )
2m = (( f � g)m � f )

�
u(i )

� 1

�
; (2.31)

u(i )
2m� 1 = ( g � f )m

�
u(i )

� 1

�
; (2.32)

u(i )
2m = (( g � f )m � g)

�
v(i )

� 1

�
; (2.33)

for m � 0. By using (2.29) and the implicit forms ( 2.30)-(2.33), we have

v(i )
� 1 = ( f � g) � m

�
�

b
c

�
; (2.34)

u(i )
� 1 = ( g � f ) � m

�
f � 1

�
�

b
c

��
= ( g � f ) � m

�
�

b� + c�� + c�
b + c�

�
; (2.35)

u(i )
� 1 = ( g � f ) � m

�
�

�


�
; (2.36)

v(i )
� 1 = ( f � g) � m

�
g� 1

�
�

�


��
= ( f � g) � m

�
�

b� + ab + d
c� + ac

�
; (2.37)

where

g� 1 (t) =
� bt + ab+ d

ct � ac
; f � 1 (t) =

� �t + �� + �
t � �

;

respectively. This means that if one of the conditions in (2.34)-(2.37) holds, then 2m � th
iteration or (2m + 1) � th iteration in ( 2.2) cannot be calculated. Consequently, desired
result follows from (2.1). Also, note that system associated with the functionsf � 1 and
g� 1 is

wn =
� bewn� l + ab+ d

c ewn� l � ac
; ewn =

� �w n� l + �� + �
w n� l � �

; n 2 N0;

and is solvable. That is, the right hand sides of the equalities in (2.34)-(2.37) can be
obtained in the closed form. �

3. Some special cases of the system ( 1.5)

In this section we deal with some special cases of the system (1.5). We note that the
system (1.5) is trivial, if a = d = 0 or � = � = 0 and can be unde�ned, if b = c = 0 or
� =  = 0 . So, we consider de�nable cases.
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3.1. Case d = 0

If d = 0 then the system (1.5) reduces to the following system

xn = ayn� k ; yn = �x n� k +
�x n� kyn� (k+ l )

�y n� (k+ l ) + x n� l
; n 2 N0:

By using the changes of variables in (2.1) we get

un = a; vn =
�a + �� + �

a + �
: (3.1)

Putting ( 3.1) in ( 2.27) and (2.28), we get solutions of the system (1.5).

3.2. Case � = 0

If � = 0 then the system (1.5) reduces to the following system

xn = ayn� k +
dyn� kxn� (k+ l )

bxn� (k+ l ) + cyn� l
; yn = �x n� k ; n 2 N0:

This case is dual of previous case. By using the changes of variables in (2.1) we get

un =
ac� + ab+ d

c� + b
; vn = � (3.2)

Putting ( 3.2) in ( 2.27) and (2.28), we get solutions of the system (1.5).

3.3. Case d = � = 0

If d = � = 0 then the system (1.5) reduces to the following linear system

xn = ayn� k ; yn = �x n� k ; n 2 N0;

which is one of simplest cases. By using the changes of variables in (2.1) we get

un = a; vn = � (3.3)

Putting ( 3.3) in ( 2.27) and (2.28), we get solutions of the system (1.5).

3.4. Case c = 0

If c = 0 then the system (1.5) reduces to the following system

xn =
�

ab+ d
b

�
yn� k ; yn = �x n� k +

�x n� kyn� (k+ l )

�y n� (k+ l ) + x n� l
; n 2 N0:

By using the changes of variables in (2.1) we get

un =
ab+ d

b
; vn =

��b + �ab + �d + b�
�b + ab + d

: (3.4)

Putting ( 3.4) in ( 2.27) and (2.28), we get solutions of the system (1.5).

3.5. Case  = 0

If  = 0 then the system (1.5) reduces to the following system

xn = ayn� k +
dyn� kxn� (k+ l )

bxn� (k+ l ) + cyn� l
; yn =

�
�� + �

�

�
xn� k ; n 2 N0:

By using the changes of variables in (2.1) we get

un =
ab� + ac�� + ac� + �d

b� + c�� + c�
; vn =

�� + �
�

: (3.5)

Putting ( 3.5) in ( 2.27) and (2.28), we get solutions of the system (1.5).
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3.6. Case c =  = 0

If c =  = 0 then the system (1.5) reduces to the following system

xn =
�

ab+ d
b

�
yn� k ; yn =

�
�� + �

�

�
xn� k ; n 2 N0:

By using the changes of variables in (2.1) we get

un =
ab+ d

b
; vn =

�� + �
�

: (3.6)

Putting ( 3.6) in ( 2.27) and (2.28), we get solutions of the system (1.5).

3.7. Case a = c = 0

If a = c = 0 then the system (1.5) reduces to the following system

xn =
�

d
b

�
yn� k ; yn = �x n� k +

�x n� kyn� (k+ l )

�y n� (k+ l ) + x n� l
; n 2 N0:

By using the changes of variables in (2.1) we get

un =
d
b

; vn =
�d + ��b + �b

d + �b
: (3.7)

Putting ( 3.7) in ( 2.27) and (2.28), we get solutions of the system (1.5).

3.8. Case � =  = 0

If � =  = 0 then the system (1.5) reduces to the following system

xn = ayn� k +
dyn� kxn� (k+ l )

bxn� (k+ l ) + cyn� l
; yn =

�
�

xn� k ; n 2 N0:

By using the changes of variables in (2.1) we get

un =
ac� + ab� + d�

c� + b�
; vn =

�
�

: (3.8)

Putting ( 3.8) in ( 2.27) and (2.28), we get solutions of the system (1.5).

3.9. Case a = c = � =  = 0

If a = c = � =  = 0 then the system (1.5) reduces to the following system

xn =
d
b

yn� k ; yn =
�
�

xn� k ; n 2 N0:

By using the changes of variables in (2.1), we get

un =
d
b

; vn =
�
�

: (3.9)

Putting ( 3.9) in ( 2.27) and (2.28), we get solutions of the system (1.5).
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3.10. Case a = b= 0

If a = b = 0 then the system (1.5) reduces to the following system

xn =
dyn� kxn� (k+ l )

cyn� l
; yn = �x n� k +

�x n� kyn� (k+ l )

�y n� (k+ l ) + x n� l
; n 2 N0: (3.10)

By using the changes of variables in (2.1), we get un = d
cvn � l

from the �rst equation of
(3.10) and so

vn =
(��c + �c ) vn� 2l + �d

�cv n� 2l + d
; n � l; (3.11)

from its second equation. Eq. (3.11) can be solved and its solution is given by

v2lm + i =

8
<

:

A 10
B 10

P101 � m +1
1 � P102 � m +1

2
P101 � m

1 � P102 � m
2

� C10
B 10

if R10 6= 1
4 ;

A 10
B 10

�
P10 +( P10 � A 10 )( m+1)
2P10 +(2 P10 � 2A 10 )m

�
� C10

B 10
if R10 = 1

4 ;
(3.12)

where R10 = �cd
(��c + �c + d )2 , A10 = ��c + �c + d , B10 = �c and C10 = d , P10j =

� j B10
yi � 2l

x i � 2l � k
+ � j C10 � R10A10, P10 = 2B10

yi � 2l
x i � 2l � k

+ 2C10 for j 2 f 1; 2g, i = l; 3l � 1.

From the equation un = d
cvn � l

, we get

u2m+ i 1 =
d

cv2m+ i 1 � l
: (3.13)

for 2m � � i 1 and so

u2ln +2 r + i 1 =
d

cvl (2n� 1)+2 r + i 1

: (3.14)

for every n 2 N0; r = 0; l � 1 and i 1 2 f 0; 1g. From (3.14), we get

u2ln +2 r + i 1 =

8
>>>><

>>>>:

d
c

1
A 10
B 10

bP101 � n
1 � bP102 � n

2
bP101 � n � 1

1 � bP102 � n � 1
2

� C 10
B 10

if R10 6= 1
4 ;

d
c

1
A 10
B 10

�
bP10 +( bP10 � A 10 ) n

b2P10 +( b2P10 � 2A 10 )( n � 1)

�
� C 10

B 10

if R10 = 1
4 :

(3.15)

where R10 = �cd
(��c + �c + d )2 , A10 = ��c + �c + d , B10 = �c and C10 = d , bP10j =

� j B10
yi � 2l

x i � 2l � k
+ � j C10 � R10A10, bP10 = 2B10

yi � 2l
x i � 2l � k

+ 2C10 for r = 0; l � 1, i 1 2 f 0; 1g,

j 2 f 1; 2g, i = l; 3l � 1. Putting ( 3.12) and (3.15) in ( 2.27) and (2.28), we get solutions of
the system (1.5).

3.11. Case � = � = 0

This case is dual of the previous case and reduces the system (1.5) to the following
system

xn = ayn� k +
dyn� kxn� (k+ l )

bxn� (k+ l ) + cyn� l
; yn =

�x n� kyn� (k+ l )

x n� l
; n 2 N0: (3.16)

By using the changes of variables in (2.1), the system (3.16) is transformed into the system

un =
(ab + d ) un� 2l + ac�

bu n� 2l + c�
; n � l; vn =

�
u n� l

; n 2 N0: (3.17)

The �rst equation of the system (3.17) can be solved and its solution is given by

u2lm + i =

8
<

:

A 11
B 11

P111 � m +1
1 � P112 � m +1

2
P111 � m

1 � P112 � m
2

� C11
B 11

if R11 6= 1
4 ;

A 11
B 11

�
P11 +( P11 � A 11 )( m+1)
2P11 +(2 P11 � 2A 11 )m

�
� C11

B 11
if R11 = 1

4 ;
(3.18)
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where R11 = dc�
(ab + d + c� )2 , A11 = ab + d + c� , B11 = b and C11 = c� , P11j =

� j B11
x i � 2l

yi � 2l � k
+ � j C11 � R11A11, P11 = 2B11

x i � 2l
yi � 2l � k

+ 2C11 for j 2 f 1; 2g, i = l; 3l � 1.
From second equation of the system (3.17), we get

v2m+ i 1 =
�

u 2m+ i 1 � l
; (3.19)

for 2m � � i 1 and so

v2ln +2 r + i 1 =
�

u l (2n� 1)+2 r + i 1

; (3.20)

for every n 2 N0; r = 0; l � 1 and i 1 2 f 0; 1g. From (3.20), we get the formulas

v2ln +2 r + i 1 =

8
>>>><

>>>>:

�


1
A 11
B 11

bP111 � n
1 � bP112 � n

2
bP111 � n � 1

1 � bP112 � n � 1
2

� C 11
B 11

if R11 6= 1
4 ;

�


1
A 11
B 11

�
bP11 +( bP11 � A 11 ) n

2bP11 +(2 bP11 � 2A 11 )( n � 1)

�
� C 11

B 11

if R11 = 1
4 ;

(3.21)

where R11 = dc�
(ab + d + c� )2 , A11 = ab + d + c� , B11 = b and C11 = c� , bP11j =

� j B11
x i � 2l

yi � 2l � k
+ � j C11 � R11A11, bP11 = 2B11

x i � 2l
yi � 2l � k

+ 2C11 for r = 0; l � 1, i 1 2 f 0; 1g,

j 2 f 1; 2g, i = l; 3l � 1. Putting ( 3.18) and (3.21) in ( 2.27) and (2.28), we get solutions of
the system (1.5).

3.12. Case a = b= � = � = 0

In this case, the system (1.5) reduces to the following system

xn =
dyn� kxn� (k+ l )

cyn� l
; yn =

�x n� kyn� (k+ l )

x n� l
; n 2 N0:

By using the changes of variables in (2.1), we get the 2l � order linear di�erence equations

un =
d
c�

un� 2l ; vn =
c�
d

vn� 2l ; n � l; (3.22)

after some simple operations. From which it follows that

u2lm + i =
�

d
c�

� m+1 x i � 2l

yi � k� 2l
; v2lm + i =

�
c�
d

� m+1 yi � 2l

x i � k� 2l
; (3.23)

where m 2 N0 and i 2 f l; l + 1 ; : : : ; 3l � 1g. Putting ( 3.23) in ( 2.27) and (2.28), we get
solutions of the system (1.5).

3.13. Case b= 0

If b = 0 , then the system (1.5) reduces to the following system

xn = ayn� k +
dyn� kxn� (k+ l )

cyn� l
; yn = �x n� k +

�x n� kyn� (k+ l )

�y n� (k+ l ) + x n� l
; n 2 N0: (3.24)

By applying ( 2.1) to ( 3.24), we get the system

un =
acvn� l + d

cvn� l
; vn =

�u n� l + �� + �
u n� l + �

; n 2 N0: (3.25)

From (3.25), we get the equations

un =
(ac� + d ) un� 2l + ac�� + ac� + �d

c�u n� 2l + c�� + c�
;

vn =
(�ac + ��c + �c ) vn� 2l + �d

(ac + �c ) vn� 2l + d
; n � l:

(3.26)
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Since both equations in (3.26) are solvable, we get the formulas

u2lm + i =

8
><

>:

A 13
B 13

P131 � m +1
1 � P132 � m +1

2
P131 � m

1 � P132 � m
2

� C13
B 13

if R13 6= 1
4 ;

A 13
B 13

�
P13 +( P13 � A 13 )( m+1)
2P13 +(2 P13 � 2A 13 )m

�
� C13

B 13
if R13 = 1

4 ;
(3.27)

and

v2lm + i =

8
>><

>>:

A 13
bB 13

bP131 � m +1
1 � bP132 � m +1

2
bP131 � m

1 � bP132 � m
2

� bC13
bB 13

if R13 6= 1
4 ;

A 13
bB 13

�
bP13 +( bP13 � A 13 )( m+1)

2bP13 +(2 bP13 � 2A 13 )m

�
� bC13

bB 13
if R13 = 1

4 ;
(3.28)

where R13 = dc�
(ac� + d + c�� + c� )2 , A13 = ac� + d + c�� + c� , B13 = c� , C13 = c�� + c� ,

bB13 = ac + �c , bC13 = d , P13j = � j B13
x i � 2l

yi � 2l � k
+ � j C13 � R13A13, bP13j = � j

bB13
yi � 2l

x i � 2l � k
+

� j
bC13 � R13A13, P13 = 2B13

x i � 2l
yi � 2l � k

+ 2C13, bP13 = 2 bB13
yi � 2l

x i � 2l � k
+ 2 bC13 for j 2 f 1; 2g,

i 2 f l; l + 1 ; : : : ; 3l � 1g. Putting ( 3.27) and (3.28) in ( 2.27) and (2.28), we get solutions
of the system (1.5).

3.14. Case � = 0

This case is dual of the previous case. Hence, in this case, the system (1.5) is as follows:

xn = ayn� k +
dyn� kxn� (k+ l )

bxn� (k+ l ) + cyn� l
; yn = �x n� k +

�x n� kyn� (k+ l )

x n� l
; n 2 N0: (3.29)

By using (2.1), we get the system

un =
acvn� l + ab+ d

cvn� l + b
; vn =

�u n� l + �
u n� l

; n 2 N0; (3.30)

from (3.29). Therefore, from the system (3.30), we get

un =
(ac� + ab + d ) un� 2l + ac�

(c� + b ) un� 2l + c�
;

vn =
(ac� + �c ) vn� 2l + ab� + �d + �b

acv n� 2l + ab + d
; n � l:

(3.31)

Since both equations of (3.31) are solvable, we get the formulas

u2lm + i =

8
><

>:

A 14
B 14

P141 � m +1
1 � P142 � m +1

2
P141 � m

1 � P142 � m
2

� C14
B 14

if R14 6= 1
4 ;

A 14
B 14

�
P14 +( P14 � A 14 )( m+1)
2P14 +(2 P14 � 2A 14 )m

�
� C14

B 14
if R14 = 1

4

(3.32)

v2lm + i =

8
>><

>>:

A 14
bB 14

bP141 � m +1
1 � bP142 � m +1

2
bP141 � m

1 � bP142 � m
2

� bC14
bB 14

if R14 6= 1
4 ;

A 14
bB 14

�
bP14 +( bP14 � A 14 )( m+1)

2bP14 +(2 bP14 � 2A 14 )m

�
� bC14

bB 14
if R14 = 1

4 ;
(3.33)

where R14 = dc�
(ac� + ab + d + c� )2 , A14 = ac� + ab + d + c� , B14 = c� + b , C14 = c� ,

bB14 = ac , bC14 = ab + d , P14j = � j B14
x i � 2l

yi � 2l � k
+ � j C14 � R14A14, bP14j = � j

bB14
yi � 2l

x i � 2l � k
+

� j
bC14 � R14A14, P14 = 2B14

x i � 2l
yi � 2l � k

+ 2C14, bP14 = 2 bB14
yi � 2l

x i � 2l � k
+ 2 bC14 for j 2 f 1; 2g,

i 2 f l; l + 1 ; : : : ; 3l � 1g. Putting ( 3.32) and (3.33) in ( 2.27) and (2.28), we get solutions
of the system (1.5).
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3.15. Case b= � = 0

If b = � = 0 then the system (1.5) reduces to the following system

xn = ayn� k +
dyn� kxn� (k+ l )

cyn� l
; yn = �x n� k +

�x n� kyn� (k+ l )

x n� l
; n 2 N0:

By using the changes of variables in (2.1) we get

un =
acvn� l + d

cvn� l
; vn =

�u n� l + �
u n� l

; n 2 N0: (3.34)

From the system (3.34) we get

un =
(ac� + d ) un� 2l + ac�

c�u n� 2l + c�
; vn =

(�ac + �c ) vn� 2l + �d
acv n� 2l + d

; n � l: (3.35)

From (3.35) we get

u2lm + i =

8
><

>:

A 15
B 15

P151 � m +1
1 � (P152 � m +1

2
P151 � m

1 � P152 � m
2

� C15
B 15

if R15 6= 1
4 ;

A 15
B 15

�
P15 +( P15 � A 15 )( m+1)
2P15 +(2 P15 � 2A 15 )m

�
� C15

B 15
if R15 = 1

4

(3.36)

v2lm + i =

8
>><

>>:

A 15
bB 15

bP151 � m +1
1 � bP152 � m +1

2
bP151 � m

1 � bP151 � m
2

� bC15
bB 15

if R15 6= 1
4 ;

A 15
bB 15

�
bP15 +( bP15 � A 15 )( m+1)

2bP15 +(2 bP15 � 2A 15 )m

�
� bC15

bB 15
if R15 = 1

4

(3.37)

where R15 = cd�
(ac� + d + c� )2 , A15 = ac� + d + c� , B15 = c� , C15 = c� , bB15 = ac ,

bC15 = d , P15j = � j B15
x i � 2l

yi � 2l � k
+ � j C15 � R15A15, bP15j = � j

bB15
yi � 2l

x i � 2l � k
+ � j

bC15 � R15A15,

P15 = 2B15
x i � 2l

yi � 2l � k
+ 2C15, bP15 = 2 bB15

yi � 2l
x i � 2l � k

+ 2 bC15 for j 2 f 1; 2g, i 2 f l; l + 1 ; : : : ; 3l � 1g.
Putting ( 3.36) and (3.37) in ( 2.27) and (2.28), we get solutions of the system (1.5).

3.16. Case abcd6= 0

Here we deal with the case whenabcd6= 0 . Since in this case the system (1.5) can be
written in the form of

xn = ayn� k +
yn� kxn� (k+ l )

b1xn� (k+ l ) + c1yn� l
; yn = �x n� k +

�x n� kyn� (k+ l )

�y n� (k+ l ) + x n� l
; n 2 N0;

with b1 = b
d and c1 = c

d , we may assume thatd = 1 . Hence we will consider the system

xn = ayn� k +
yn� kxn� (k+ l )

bxn� (k+ l ) + cyn� l
;

yn = �x n� k +
�x n� kyn� (k+ l )

�y n� (k+ l ) + x n� l
; n 2 N0;

(3.38)

from now on. Moreover, the system (3.38) can be written in the form of

xn

yn� k
=

(ab +  + ac� ) xn � 2l
yn � ( k +2 l )

+ ab� + � + ac�� + ac�

(b + c� ) xn � 2l
yn � ( k +2 l )

+ b� + c�� + c�
;

yn

xn� k
=

� xn � l
yn � ( k + l )

+ ( �� + � )

 xn � l
yn � ( k + l )

+ �
; n � l:

(3.39)
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Remark 3.1. For abc��� 6= 0 in the system (1.5), it is easy to see that there is the
degenerate case

�
�
�
�

ac� + ab + d ac�� + ac� + ab� + d�
c� + b c�� + c� + b�

�
�
�
� = 0

if and only if d = 0 . Hence, we avoid the degenerate case via the assumptiond 6= 0 .

3.16.1. The case ab +  + ac� + b� + c�� + c� = 0 . If ab +  + ac� + b� + c�� + c� = 0 ,
then we get the system

xn

yn� k
=

� (b� + c�� + c� ) xn � 2l
yn � ( k +2 l )

+ � � (b� + c�� + c� )+ ac�


(b + c� ) xn � 2l
yn � ( k +2 l )

+ b� + c�� + c�
;

yn

xn� k
=

� xn � l
yn � ( k + l )

+ ( �� + � )

 xn � l
yn � ( k + l )

+ �
; n � l;

(3.40)

from (3.39). By using the change of variables (2.1), we get the system

un =
� (b� + c�� + c� ) un� 2l + � � (b� + c�� + c� )+ ac�



(b + c� ) un� 2l + b� + c�� + c�
;

vn =
�u n� l + ( �� + � )

u n� l + �
; n � l;

(3.41)

which can be written as

(b + c� ) un + b� + c�� + c� =
abc� + ac2�� + c2��� + c�b� + c2� 2

(b + c� ) un� 2l + b� + c�� + c�
;

vn =
�u n� l + ( �� + � )

u n� l + �
; n � l:

(3.42)

By applying the change of variables(b + c� ) un + b� + c�� + c� = tn to the system
(3.42), we obtain

tn =
abc� + ac2�� + c2��� + c�b� + c2� 2

tn� 2l

= tn� 4l

= cj ; n � 3l; j = 1; 4l;

(3.43)

where eachcj is a constant which dependents to the initial valuesx � i ; y� i ; i = 1; k + l.
Consequently, by using(b + c� ) un + b� + c�� + c� = tn and considering the system
(3.42), we get

un =
tn � (b� + c�� + c� )

b + c�
; n � � l; vn =

�t n� l + �b
tn� l � c�

; n 2 N0: (3.44)

Putting ( 3.44) in ( 2.27) and (2.28), we get solutions of the system (1.5).

3.17. Case ��� 6= 0

Here we deal with the case when��� 6= 0 . Since in this case the system (1.5) can be
written in the form of

xn = ayn� k +
dyn� kxn� (k+ l )

bxn� (k+ l ) + cyn� l
; yn = �x n� k +

xn� kyn� (k+ l )

� 1yn� (k+ l ) +  1xn� l
; n 2 N0;
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with � 1 = �
� and  1 = 

� , we may assume that� = 1 . Hence we will consider the system

xn = ayn� k +
dyn� kxn� (k+ l )

bxn� (k+ l ) + cyn� l
;

yn = �x n� k +
xn� kyn� (k+ l )

�y n� (k+ l ) + x n� l
; n 2 N0;

(3.45)

from now on. Moreover, the system (3.45) can be written in the form of

xn

yn� k
=

ac yn � l
xn � ( k + l )

+ ( ab+ d)

c yn � l
xn � ( k + l )

+ b
;

yn

xn� k
=

(��c + c + �ac ) yn � 2l
xn � ( k +2 l )

+ ��b + b+ �ab + �d

(�c + ac ) yn � 2l
xn � ( k +2 l )

+ �b + ab + d
; n � l:

(3.46)

Remark 3.2. For ��abcd 6= 0 in the system (1.5), it is easy to see that there is the
degenerate case

�
�
�
�

�ac + ��c + �c �ab + �d + ��b + �b
ac + �c ab + d + �b

�
�
�
� = 0

if and only if � = 0 . Hence, we avoid the degenerate case via the assumption� 6= 0 .

3.17.1. The case ��c + c+ �ac + �b + ab + d = 0 . If ��c + c+ �ac + �b + ab + d = 0 ,
then we get the system

xn

yn� k
=

ac yn � l
xn � ( k + l )

+ ( ab+ d)

c yn � l
xn � ( k + l )

+ b
;

yn

xn� k
=

� (�b + ab + d ) yn � 2l
xn � ( k +2 l )

+ � b(�b + ab + d )+ �cd
c

(�c + ac ) yn � 2l
xn � ( k +2 l )

+ �b + ab + d
; n � l;

(3.47)

from (3.46). By using the change of variables (2.1), we get the system

un =
acvn� l + ( ab+ d)

cvn� l + b
;

vn =
� (�b + ab + d ) vn� 2l + � b(�b + ab + d )+ �cd

c

(�c + ac ) vn� 2l + �b + ab + d
; n � l;

(3.48)

which can be written as

un =
acvn� l + ( ab+ d)

cvn� l + b
; n � l;

(�c + ac ) vn + �b + ab + d =
��cd + � 2acd+  2abd+ d�b +  2d2

(�c + ac ) vn� 2l + �b + ab + d
; n � l:

(3.49)

Next, by applying the change of variables(�c + ac ) vn + �b + ab + d = btn to the
system (3.49), we obtain

btn =
��cd + � 2acd+  2abd+ d�b +  2d2

btn� 2l

= btn� 4l

= dj ; n � 3l; j = 1; 4l;

(3.50)

where eachdj is a constant which dependents to the initial valuesx � i ; y� i ; i = 1; k + l.
Consequently, by using(�c + ac ) vn + �b + ab + d = btn and considering the system
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(3.49), we get

un =
abtn� l + d�
btn� l � d

; n 2 N0; vn =
btn � (�b + ab + d )

�c + ac
; n � � l: (3.51)

Putting ( 3.51) in ( 2.27) and (2.28), we get solutions of the system (1.5).

3.18. Case abcd��� 6= 0

Here we deal with the case whenabcd��� 6= 0 . Since in this case the system (1.5) can
be written in the form of

xn = ayn� k +
yn� kxn� (k+ l )

b2xn� (k+ l ) + c2yn� l
; yn = �x n� k +

xn� kyn� (k+ l )

� 2yn� (k+ l ) +  2xn� l
; n 2 N0;

with b2 = b
d , c2 = c

d , � 2 = �
� and  2 = 

� , we may assume thatd = 1 and � = 1 . Hence we
will consider the system

xn = ayn� k +
yn� kxn� (k+ l )

bxn� (k+ l ) + cyn� l
;

yn = �x n� k +
xn� kyn� (k+ l )

�y n� (k+ l ) + x n� l
; n 2 N0;

(3.52)

from now on. Moreover, the system (3.52) can be written in the form of

xn

yn� k
=

(ab + ac� +  ) xn � 2l
yn � ( k +2 l )

+ ab� + � + ac�� + ac

(b + c� ) xn � 2l
yn � ( k +2 l )

+ b� + c�� + c
; n � l;

yn

xn� k
=

(��c + �ac + c) yn � 2l
xn � ( k +2 l )

+ ��b + b+ �ab + �

(�c + ac ) yn � 2l
xn � ( k +2 l )

+ �b + ab + 
; n � l:

(3.53)

Remark 3.3. For abc�� 6= 0 in the system (1.5), it is easy to see that there is the
degenerate case

�
�
�
�

ac� + ab + d ac�� + ac� + ab� + d�
c� + b c�� + c� + b�

�
�
�
� = 0 ;

�
�
�
�

�ac + ��c + �c �ab + �d + ��b + �b
ac + �c ab + d + �b

�
�
�
� = 0 ;

if and only if d = 0 and � = 0 . Hence, we avoid the degenerate case via the assumptions
d 6= 0 and � 6= 0 .

3.18.1. The case ab + ac� + b� + c�� + c+  = 0 . If ab + ac� + b� + c�� + c+  = 0 ,
then we get the system

xn

yn� k
=

� (b� + c�� + c) xn � 2l
yn � ( k +2 l )

+ � � (b� + c�� + c)+ ac


(b + c� ) xn � 2l
yn � ( k +2 l )

+ b� + c�� + c
; n � l;

yn

xn� k
=

� (�b + ab +  ) yn � 2l
xn � ( k +2 l )

+ � b(�b + ab +  )+ �c
c

(�c + ac ) yn � 2l
xn � ( k +2 l )

+ �b + ab + 
; n � l;

(3.54)

from (3.53). By using the change of variables (2.1), we get the system

un =
� (b� + c�� + c) un� 2l + � � (b� + c�� + c)+ ac



(b + c� ) un� 2l + b� + c�� + c
; n � l;

vn =
� (�b + ab +  ) vn� 2l + � b(�b + ab +  )+ �c

c

(�c + ac ) vn� 2l + �b + ab + 
; n � l;

(3.55)
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which can be written as

(b + c� ) un + b� + c�� + c =
abc + ac2� + cb� + c2�� + c2

(b + c� ) un� 2l + b� + c�� + c
; n � l;

(�c + ac ) vn + �b + ab +  =
��c + � 2ac+ �b +  2ab+  2

(�c + ac ) vn� 2l + �b + ab + 
; n � l:

(3.56)

Next, by applying the change of variables(b + c� ) un+ b� + c�� + c = kn and (�c + ac ) vn+
�b + ab +  = bkn to the system (3.56), we obtain

kn =
abc + ac2� + cb� + c2�� + c2

kn� 2l
= kn� 4l = ej ; n � 3l; j = 1; 4l;

bkn =
��c + � 2ac+ �b +  2ab+  2

bkn� 2l
= bkn� 4l = bej ; n � 3l; j = 1; 4l;

(3.57)

where eachej and bej are constants which dependent to the initial valuesx � i ; y� i ; i =
1; k + l. Consequently, by using(b + c� ) un + b� + c�� + c = kn and (�c + ac ) vn +
�b + ab +  = bkn , we get

un =
kn � (b� + c�� + c)

b + c�
; vn =

bkn � (�b + ab +  )
�c + ac

; n � � l: (3.58)

Putting ( 3.58) in ( 2.27) and (2.28), we get solutions of the system (1.5).

4. Long-term behavior of the system for abc�� 6= 0 when l = 1

In this section, we investigate the long-term behavior of the solutions of the system
(1.5) when l = 1 , abc�� 6= 0 : In this case, we get the system

xn = ayn� k +
yn� kxn� k� 1

bxn� k� 1 + cyn� 1
; yn = �x n� k +

xn� kyn� k� 1

�y n� k� 1 + x n� 1
; n 2 N0: (4.1)

The solutions of the system (4.1) are given by

x2kn +2 r + i =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

x2r � 2k+ i
nQ

j =0

�
D
E1

N1 � kj + r +1
1 � N2 � kj + r +1

2

N1 � kj + r
1 � N2 � kj + r

2
� F1

E1

�

�

 
D
E2

T1 �
kj + r + b i � k � 1

2 c+1
1 � T2 �

kj + r + b i � k � 1
2 c+1

2

T1 �
kj + r + b i � k � 1

2 c
1 � T2 �

kj + r + b i � k � 1
2 c

2

� F2
E2

!

if eR < 1
4 ;

x2r � 2k+ i
nQ

j =0

�
D
E1

�
Z1+( Z1 � D )( kj + r +1)
2Z1+(2 Z1 � 2D )( kj + r )

�
� F1

E1

�

�
�

D
E2

�
Z2+( Z2 � D )( kj + r + b i � k � 1

2 c+1)

2Z2+(2 Z2 � 2D )( kj + r + b i � k � 1
2 c)

�
� F2

E2

�
if eR = 1

4 ;

(4.2)

and

y2kn +2 r + i =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

y2r � 2k+ i
nQ

j =0

�
D
E2

T1 � kj + r +1
1 � T2 � kj + r +1

2

T1 � kj + r
1 � T2 � kj + r

2
� F2

E2

�

�

 
D
E1

N1 �
kj + r + b i � k � 1

2 c+1
1 � N2 �

kj + r + b i � k � 1
2 c+1

2

N1 �
kj + r + b i � k � 1

2 c
1 � N2 �

kj + r + b i � k � 1
2 c

2

� F1
E1

!

if eR < 1
4 ;

y2r � 2k+ i
nQ

j =0

�
D
E2

�
Z2+( Z2 � D )( kj + r +1)
2Z2+(2 Z2 � 2D )( kj + r )

�
� F2

E2

�

�
�

D
E1

�
Z1+( Z1 � D )( kj + r + b i � k � 1

2 c+1)

2Z1+(2 Z1 � 2D )( kj + r + b i � k � 1
2 c)

�
� F1

E1

�
if eR = 1

4 ;

(4.3)

where eR = c
(ac� + ab +  + c�� + c+ b� )2 , D = ac� + ab + c�� + b� + c +  , E1 = c� + b ,

F1 = c�� + c + b� , E2 = ac + �c , F2 = ab +  + �b , Z1 = 2E1
x i � 2

yi � k � 2
+ 2F1, Z2 =

2E2
yi � 2

x i � k � 2
+ 2F2, N j := � j E1

x i � 2
yi � k � 2

+ � j F1 � eRD and Tj := � j E2
yi � 2

x i � k � 2
+ � j F2 � eRD for
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i 2 f 1; 2g, j 2 f 1; 2g, k 2 N and r 2 Sk;i , where

Sk;i =

(
f k� i � 1

2 + i 1; i 1 = 0; k � 1g if ( k � i ) odd;
fb k� i � 1

2 c + i 1; i 1 = 1; kg if ( k � i ) even:

Theorem 4.1. Assume that eR = c
(ac� + ab +  + c�� + c+ b� )2 < 1

4 , x i � 2
yi � k � 2

6=
eRD � � j F1

� j E1
, yi � 2

x i � k � 2
6=

eRD � � j F2
� j E2

, L j := D� j � F1
E1

, M j := D� j � F2
E2

, N j := � j E1
x i � 2

yi � k � 2
+ � j F1 � eRD and Tj :=

� j E2
yi � 2

x i � k � 2
+ � j F2 � eRD for i 2 f 1; 2g and j 2 f 1; 2g. Then the following statements are

true.

(a) If j� 1j > j� 2j and jL 1M 1j < 1, then xn ! 0 and yn ! 0, as n ! 1 .
(b) If j� 1j > j� 2j and jL 1M 1j > 1, then jxn j ! 1 and jyn j ! 1 , as n ! 1 .
(c) If j� 1j > j� 2j and L 1M 1 = 1 , then (xn )n�� k� 1 and (yn )n�� k� 1 are convergent.
(d) If j� 1j > j� 2j and L 1M 1 = � 1, then (x2kn +2 r + i )n2 N0 and (y2kn +2 r + i )n2 N0 , for

i 2 f 1; 2g, r 2 Sk;i are convergent.
(e) If j� 1j < j� 2j and jL 2M 2j < 1, then xn ! 0 and yn ! 0, as n ! 1 .
(f) If j� 1j < j� 2j and jL 2M 2j > 1, then jxn j ! 1 and jyn j ! 1 , as n ! 1 .
(g) If j� 1j < j� 2j and L 2M 2 = 1 , then (xn )n�� k� 1 and (yn )n�� k� 1 are convergent.
(h) If j� 1j < j� 2j and L 2M 2 = � 1, then (x2kn +2 r + i )n2 N0 and (y2kn +2 r + i )n2 N0 , for

i 2 f 1; 2g, r 2 Sk;i are convergent.

Proof. Suppose that

a(r )
n1

=

 
D
E1

N1� kn 1+ r +1
1 � N2� kn 1+ r +1

2

N1� kn 1+ r
1 � N2� kn 1+ r

2

�
F1

E1

!

�

0

@ D
E2

T1�
kn 1+ r + b i � k � 1

2 c+1
1 � T2�

kn 1+ r + b i � k � 1
2 c+1

2

T1�
kn 1+ r + b i � k � 1

2 c
1 � T2�

kn 1+ r + b i � k � 1
2 c

2

�
F2

E2

1

A

(4.4)

and

b(r )
n1

=

 
D
E2

T1� kn 1+ r +1
1 � T2� kn 1+ r +1

2

T1� kn 1+ r
1 � T2� kn 1+ r

2

�
F2

E2

!

�

0

@ D
E1

N1�
kn 1+ r + b i � k � 1

2 c+1
1 � N2�

kn 1+ r + b i � k � 1
2 c+1

2

N1�
kn 1+ r + b i � k � 1

2 c
1 � N2�

kn 1+ r + b i � k � 1
2 c

2

�
F1

E1

1

A

(4.5)

for n1 2 N0, i 2 f 1; 2g and r 2 Sk;i . Then, if j� 1j > j� 2j, we get

lim
n1 !1

a(r )
n1

= lim
n1 !1

b(r )
n1

=
�

D� 1 � F1

E1

� �
D� 1 � F2

E2

�
(4.6)
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for eachi 2 f 1; 2g. From (4.2), (4.3), and (4.6), the results follow from the assumptions in
(a) and (b). For each i 2 f 1; 2g and su�ciently large n1, (4.4) and (4.5) can be written as

a(r )
n1

=

0

B
B
@�

F1

E1
+

D
E1

� 1

�
1 � N2

N1

�
� 2
� 1

� kn 1+ r +1
�

1 � N2
N1

�
� 2
� 1

� kn 1+ r

1

C
C
A

�

0

B
B
B
B
@

�
F2

E2
+

D
E2

� 1

 

1 � T2
T1

�
� 2
� 1

� kn 1+ r + b i � k � 1
2 c+1

!

1 � T2
T1

�
� 2
� 1

� kn 1+ r + b i � k � 1
2 c

1

C
C
C
C
A

=

 

�
F1

E1
+

D� 1

E1
+

DN 2

E1N1
(� 1 � � 2)

�
� 2

� 1

� kn 1+ r

+ O
�

� 2

� 1

� 2kn 1
!

(4.7)

�

0

@�
F2

E2
+

D� 1

E2
+

DT2

E2T1
(� 1 � � 2)

�
� 2

� 1

� kn 1+ r + b i � k � 1
2 c

+ O
�

� 2

� 1

� 2kn 1

1

A

= L 1M 1 + L 1
DT2

E2T1
(� 1 � � 2)

�
� 2

� 1

� kn 1+ r + b i � k � 1
2 c

+ M 1
DN 2

E1N1
(� 1 � � 2)

�
� 2

� 1

� kn 1+ r

+ O
�

� 2

� 1

� 2kn 1

and

b(r )
n1

=

0

B
B
@�

F2

E2
+

D
E2

� 1

�
1 � T2

T1

�
� 2
� 1

� kn 1+ r +1
�

1 � T2
T1

�
� 2
� 1

� kn 1+ r

1

C
C
A

�

0

B
B
B
B
@

�
F1

E1
+

D
E1

� 1

 

1 � N2
N1

�
� 2
� 1

� kn 1+ r + b i � k � 1
2 c+1

!

1 � N2
N1

�
� 2
� 1

� kn 1+ r + b i � k � 1
2 c

1

C
C
C
C
A

=

 

�
F2

E2
+

D� 1

E2
+

DT2

E2T1
(� 1 � � 2)

�
� 2

� 1

� kn 1+ r

+ O
�

� 2

� 1

� 2kn 1
!

(4.8)

�

0

@�
F1

E1
+

D� 1

E1
+

DN 2

E1N1
(� 1 � � 2)

�
� 2

� 1

� kn 1+ r + b i � k � 1
2 c

+ O
�

� 2

� 1

� 2kn 1

1

A

= M 1L 1 + M 1
DN 2

E1N1
(� 1 � � 2)

�
� 2

� 1

� kn 1+ r + b i � k � 1
2 c

+ L 1
DT2

E2T1
(� 1 � � 2)

�
� 2

� 1

� kn 1+ r

+ O
�

� 2

� 1

� 2kn 1

:
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From (4.2), (4.3), (4.7), and (4.8), the results in (c) can be seen easily. For eachi 2 f 1; 2g
and su�ciently large n1, (4.4) and (4.5) can be again written as

a(r )
n1

=

0

B
B
@�

F1

E1
+

D
E1

� � 1

�
� 1 + N2

N1

�
� 2
� 1

� kn 1+ r +1
�

1 � N2
N1

�
� 2
� 1

� kn 1+ r

1

C
C
A

�

0

B
B
B
B
@

�
F2

E2
+

D
E2

� � 1

 

� 1 + T2
T1

�
� 2
� 1

� kn 1+ r + b i � k � 1
2 c+1

!

1 � T2
T1

�
� 2
� 1

� kn 1+ r + b i � k � 1
2 c

1

C
C
C
C
A

=

 

�
F1

E1
+

D� 1

E1

�
1 �

N2

N1

(� 2 � � 1)
� 1

� �
� 2

� 1

� kn 1+ r

+ O
�

� 2

� 1

� 2kn 1
!

(4.9)

�

0

@�
F2

E2
+

D� 1

E2

�
1 �

T2

T1

(� 2 � � 1)
� 1

� �
� 2

� 1

� kn 1+ r + b i � k � 1
2 c

+ O
�

� 2

� 1

� 2kn 1

1

A

= L 1M 1

 

1 �
N2

N1

(� 2 � � 1)
� 1

�
� 2

� 1

� kn 1+ r

�
T2

T1

(� 2 � � 1)
� 1

�
� 2

� 1

� kn 1+ r + b i � k � 1
2 c

+ O
�

� 2

� 1

� 2kn 1
!

and

b( r )
n 1

=

0

B
B
@�

F2

E2
+

D
E2

� � 1

�
� 1 + T2

T1

�
� 2
� 1

� kn 1 + r +1
�

1 � T2
T1

�
� 2
� 1

� kn 1 + r

1

C
C
A

�

0

B
B
B
@

�
F1

E1
+

D
E1

� � 1

�
� 1 + N 2

N 1

�
� 2
� 1

� kn 1 + r + b i � k � 1
2 c+1

�

1 � N 2
N 1

�
� 2
� 1

� kn 1 + r + b i � k � 1
2 c

1

C
C
C
A

=

 

�
F2

E2
+

D� 1

E2

�
1 �

T2

T1

(� 2 � � 1)
� 1

� �
� 2

� 1

� kn 1 + r

+ O
�

� 2

� 1

� 2kn 1
!

(4.10)

�

 

�
F1

E1
+

D� 1

E1

�
1 �

N2

N1

(� 2 � � 1)
� 1

� �
� 2

� 1

� kn 1 + r + b i � k � 1
2 c

+ O
�

� 2

� 1

� 2kn 1
!

= M 1L 1

 

1 �
T2

T1

(� 2 � � 1)
� 1

�
� 2

� 1

� kn 1 + r

�
N2

N1

(� 2 � � 1)
� 1

�
� 2

� 1

� kn 1 + r + b i � k � 1
2 c

+ O
�

� 2

� 1

� 2kn 1
!

From (4.2), (4.3), (4.9), and (4.10), the results in (d) can be seen easily. Proofs of the
(e)-(h) are not given in here since they could be obtained similar with proofs of the(a)-
(d). �

Theorem 4.2. Assume that eR = c
(ac� + ab +  + c�� + c+ b� )2 = 1

4 , x i � k� 2 yi � k� 2 6= 0 for

i 2 f 1; 2g, D = ac� + ab + c�� + b� + c+  , Z1 = 2E1
x i � 2

yi � k � 2
+2F1, Z2 = 2E2

yi � 2
x i � k � 2

+2F2.
Then the following statements are true.

(a) If j (D � 2F1 )( D � 2F2 )
4E1E2

j < 1, then xn ! 0 and yn ! 0, as n ! 1 .
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(b) If j (D � 2F1 )( D � 2F2 )
4E1E2

j > 1, then jxn j ! 1 and jyn j ! 1 , as n ! 1 .

(c) If j (D � 2F1 )( D � 2F2 )
4E1E2

j = 1 and (D � 2F1 )( D � 2F2 )
2D (D � F1 � F2 ) > 0, then jxn j ! 1 and jyn j ! 1 , as

n ! 1 .
(d) If j (D � 2F1 )( D � 2F2 )

4E1E2
j = 1 and (D � 2F1 )( D � 2F2 )

2D (D � F1 � F2 ) < 0, then xn ! 0 and yn ! 0, as
n ! 1 .

Proof. If R = c
(ac� + ab +  + c�� + c+ b� )2 = 1

4 , then we get � 1 = � 2 = 1
2 . Let

c(r )
n1

=
�

D
E1

Z1 + ( Z1 � D )(kn1 + r + 1)
2Z1 + (2 Z1 � 2D)(kn1 + r )

�
F1

E1

�

�

 
D
E2

Z2 + ( Z2 � D )(kn1 + r + bi � k� 1
2 c + 1)

2Z2 + (2 Z2 � 2D)(kn1 + r + bi � k� 1
2 c)

�
F2

E2

! (4.11)

and

d(r )
n1

=
�

D
E2

Z2 + ( Z2 � D )(kn1 + r + +1)
2Z2 + (2 Z2 � 2D)(kn1 + r )

�
F2

E2

�

�

 
D
E1

Z1 + ( Z1 � D )(kn1 + r + bi � k� 1
2 c + 1)

2Z1 + (2 Z1 � 2D)(kn1 + r + bi � k� 1
2 c)

�
F1

E1

! (4.12)

for every n1 2 N0, i 2 f 1; 2g and r 2 Sk;i . If at least one of the coe�cients of n1 is di�erent
from 0, then we have

lim
n1 !1

c(r )
n1

=
(D � 2F1)(D � 2F2)

4E1E2
= lim

n1 !1
d(r )

n1
(4.13)

for each i 2 f 1; 2g. Otherwise, when x i � 2
yi � k � 2

= D � 2F1
2E1

and yi � 2
x i � k � 2

= D � 2F2
2E2

for i 2 f 1; 2g,
we get the equality (4.13). From ( 4.13), the results follow from the assumptions in (a)
and (b). Now we consider the other cases. For eachi 2 f 1; 2g and su�ciently large n1, we
obtain

c( r )
n 1

= d( r )
n 1

=
�

�
F1

E1
+

D
E1

�
1
2

+
1

2kn1
+ O

�
1
n2

1

���

�
�

�
F2

E2
+

D
E2

�
1
2

+
1

2kn1
+ O

�
1
n2

1

���

=
�

D � 2F1

2E1
+

D
2E1kn1

+ O
�

1
n2

1

�� �
D � 2F2

2E2
+

D
2E2kn1

+ O
�

1
n2

1

��

=
(D � 2F1)(D � 2F2)

4E1E2

0

@1 +
2D (D � F1 � F2 )

(D � 2F1 )( D � 2F2 )

kn1
+ O

�
1
n2

1

�
1

A (4.14)

= �

0

@1 +
1

(D � 2F1 )( D � 2F2 )
2D (D � F1 � F2 ) kn1

+ O
�

1
n2

1

�
1

A

= � exp

0

@ 1
(D � 2F1 )( D � 2F2 )

2D (D � F1 � F2 ) kn1

+ O
�

1
n2

1

�
1

A :

From (4.14), by using the fact that
P n1

j 1=1 (1=j1) ! 1 as n1 ! 1 , then the statements
easily follow. �

5. Some other applications

Now, we will give theoretical explanations for the formulas of solutions of di�erence
equations systems given in [41] as some applications of the main results in Section2.
First, we consider k = l = 1 , a = � = 0 . In this case the system (1.5) becomes

xn =
dyn� 1xn� 2

bxn� 2 + cyn� 1
; yn =

�x n� 1yn� 2

�y n� 2 + x n� 1
; n 2 N0: (5.1)
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5.1. Case b= c = d = � =  = � = 1

We will derive the solution forms of the system (5.1) with b = c = d = � =  = � = 1 ,
that is, the system

xn =
yn� 1xn� 2

xn� 2 + yn� 1
; yn =

xn� 1yn� 2

yn� 2 + xn� 1
; n 2 N0; (5.2)

given in [41], through analytical approach. Also, the general solutions of the system (5.2)
are expressed in terms of Fibonacci numbers. Now, to begin with, takingb = c = d = � =
 = � = 1 in (2.12)-(2.13), we have

qm+1 � qm +
1
9

qm� 1 = 0 ; m 2 N0: (5.3)

The characteristic equation of (5.3) can be clearly obtained as of the form� 2 � � + 1
9 = 0 ,

with the roots � 1 = 3+
p

5
6 = 1

3

�
1+

p
5

2

� 2
= b� 2

3 and � 2 = 3�
p

5
6 = 1

3

�
1�

p
5

2

� 2
= b� 2

3 . On the
other hand, taking into account A = 3 ; B1 = B2 = 1 ; C1 = C2 = 2 and the Binet Formula
for Fibonacci numbers, we can rewrite the equations in (2.18)-(2.19) as

u2m+ i = 3
(� 1ui � 2 + 2 � 1 � 1

3)� m+1
1 � (� 2ui � 2 + 2 � 2 � 1

3)� m+1
2

(� 1ui � 2 + 2 � 1 � 1
3)� m

1 � (� 2ui � 2 + 2 � 2 � 1
3)� m

2
� 2; (5.4)

v2m+ i = 3
(� 1vi � 2 + 2 � 1 � 1

3)� m+1
1 � (� 2vi � 2 + 2 � 2 � 1

3)� m+1
2

(� 1vi � 2 + 2 � 1 � 1
3)� m

1 � (� 2vi � 2 + 2 � 2 � 1
3)� m

2
� 2; (5.5)

for m 2 N0; i 2 f 1; 2g.
Using the relations b� b� = � 1; b� 2 + b� = 2 ; b� 2 + b� = 2 in (5.4)-(5.5) we get

u2m + i =
(b� 2m +4 � b� 2m +4 )ui � 2 + ( b� 2m +6 � b� 2m +6 ) � (b� 2m +3 � b� 2m +3 ) � (b� 2m +2 � b� 2m +2 )

(b� 2m +2 � b� 2m +2 )ui � 2 + ( b� 2m +4 � b� 2m +4 ) � (b� 2m +1 � b� 2m +1 ) � (b� 2m � b� 2m )
� 2

=
F2m +4 ui � 2 + F2m +6 � F2m +3 � F2m +2

F2m +2 ui � 2 + F2m +4 � F2m +1 � F2m
� 2

=
F2m +1 ui � 2 + F2m +2

F2m +2 ui � 2 + F2m +3
;

(5.6)

v2m + i =
(b� 2m +4 � b� 2m +4 )vi � 2 + ( b� 2m +6 � b� 2m +6 ) � (b� 2m +3 � b� 2m +3 ) � (b� 2m +2 � b� 2m +2 )

(b� 2m +2 � b� 2m +2 )vi � 2 + ( b� 2m +4 � b� 2m +4 ) � (b� 2m +1 � b� 2m +1 ) � (b� 2m � b� 2m )
� 2

=
F2m +4 vi � 2 + F2m +6 � F2m +3 � F2m +2

F2m +2 vi � 2 + F2m +4 � F2m +1 � F2m
� 2

=
F2m +1 vi � 2 + F2m +2

F2m +2 vi � 2 + F2m +3
;

(5.7)

whereFn is n-th Fibonacci number, ui � 2 = x i � 2
yi � 3

, vi � 2 = yi � 2
x i � 3

. From (2.1), (5.2), and (5.6),
we get that, for m 2 N0 and i 2 f 1; 2g,

u2m+1 =
F2m+1 u� 1 + F2m+2

F2m+2 u� 1 + F2m+3

=
x � 1F2m+1 + y� 2F2m+2

x � 1F2m+2 + y� 2F2m+3
;

(5.8)

u2m+2 =
F2m+1 u0 + F2m+2

F2m+2 u0 + F2m+3

=
y� 1F2m+2 + x � 2F2m+3

y� 1F2m+3 + x � 2F2m+4
:

(5.9)
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Similarly, from ( 2.1), (5.2), and (5.7), we get that, for m 2 N0 and i 2 f 1; 2g,

v2m+1 =
F2m+1 v� 1 + F2m+2

F2m+2 v� 1 + F2m+3

=
y� 1F2m+1 + x � 2F2m+2

y� 1F2m+2 + x � 2F2m+3
;

(5.10)

v2m+2 =
F2m+1 v0 + F2m+2

F2m+2 v0 + F2m+3

=
x � 1F2m+2 + y� 2F2m+3

x � 1F2m+3 + y� 2F2m+4
:

(5.11)

By substituting the formulas in ( 5.8)-(5.11) into ( 2.27)-(2.28) and changing indexes, we
have the following results.

Theorem 5.1. Assume that (xn ; yn )n�� 2 is a well-de�ned solution of the system (5.2).
Then the following results are true.

x2m+1 =
x � 1y� 2

y� 2F2m+3 + x � 1F2m+2
; x2m+2 =

y� 1x � 2

y� 1F2m+3 + x � 2F2m+4
; m � � 1;

y2m+1 =
y� 1x � 2

x � 2F2m+3 + y� 1F2m+2
; y2m+2 =

x � 1y� 2

x � 1F2m+3 + y� 2F2m+4
; m � � 1;

where f Fng1
n=0 = f 0; 1; 1; 2; 3; 5; 8; 13; :::g, F� 1 = 1 .

5.2. Case b= � c = d = � � = �  = � = 1

We will derive the solution forms of the system (5.1) with b = � c = d = � � = �  =
� = 1 , that is, the system

xn =
yn� 1xn� 2

xn� 2 � yn� 1
; yn =

xn� 1yn� 2

� yn� 2 � xn� 1
; n 2 N0; (5.12)

given in [41], through analytical approach. Also, the general solutions of the system (5.12)
are expressed in terms of Fibonacci numbers. Now, to begin with, takingb = � c = d =
� � = �  = � = 1 in (2.12)-(2.13), we have

qm+1 � qm +
1
9

qm� 1 = 0 ; m 2 N0: (5.13)

The characteristic equation of (5.13) can be clearly obtained as of the form� 2 � � + 1
9 = 0

with the roots � 1 = 3+
p

5
6 = 1

3

�
1+

p
5

2

� 2
= b� 2

3 and � 2 = 3�
p

5
6 = 1

3

�
1�

p
5

2

� 2
= b� 2

3 . On the
other hand, taking into account A = � 3; B1 = � 1; B2 = 1 ; C1 = C2 = � 2 and the Binet
Formula for Fibonacci numbers, then we can rewrite the equations in (2.18)-(2.19) as

u2m+ i = 3
(� � 1ui � 2 � 2� 1 + 1

3)� m+1
1 � (� � 2ui � 2 � 2� 2 + 1

3)� m+1
2

(� � 1ui � 2 � 2� 1 + 1
3)� m

1 � (� � 2ui � 2 � 2� 2 + 1
3)� m

2
� 2; (5.14)

v2m+ i = � 3
(� 1vi � 2 � 2� 1 + 1

3)� m+1
1 � (� 2vi � 2 � 2� 2 + 1

3)� m+1
2

(� 1vi � 2 � 2� 1 + 1
3)� m

1 � (� 2vi � 2 � 2� 2 + 1
3)� m

2
+ 2 ; (5.15)

for m 2 N0; i 2 f 1; 2g.
Using the relations b� b� = � 1; b� 2 + b� = 2 ; b� 2 + b� = 2 in (5.14)-(5.15) we get

u2m + i =
� (b� 2m +4 � b� 2m +4 )ui � 2 � (b� 2m +6 � b� 2m +6 ) + ( b� 2m +3 � b� 2m +3 ) + ( b� 2m +2 � b� 2m +2 )

� (b� 2m +2 � b� 2m +2 )ui � 2 � (b� 2m +4 � b� 2m +4 ) + ( b� 2m +1 � b� 2m +1 ) + ( b� 2m � b� 2m )
� 2

=
� F2m +4 ui � 2 � F2m +6 + F2m +3 + F2m +2

� F2m +2 ui � 2 � F2m +4 + F2m +1 + F2m
� 2

=
� F2m +1 ui � 2 � F2m +2

� F2m +2 ui � 2 � F2m +3
;

(5.16)
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v2m + i = �
(b� 2m +4 � b� 2m +4 )vi � 2 � (b� 2m +6 � b� 2m +6 ) + ( b� 2m +3 � b� 2m +3 ) + ( b� 2m +2 � b� 2m +2 )

(b� 2m +2 � b� 2m +2 )vi � 2 � (b� 2m +4 � b� 2m +4 ) + ( b� 2m +1 � b� 2m +1 ) + ( b� 2m � b� 2m )
+ 2

= �
F2m +4 vi � 2 � F2m +6 + F2m +3 + F2m +2

F2m +2 vi � 2 � F2m +4 + F2m +1 + F2m
+ 2

=
� F2m +1 vi � 2 + F2m +2

F2m +2 vi � 2 � F2m +3
;

(5.17)

where Fn is n-th Fibonacci number, ui � 2 = x i � 2
yi � 3

, vi � 2 = yi � 2
x i � 3

. From (2.1), (5.12), and
(5.16), we get that, for m 2 N0 and i 2 f 1; 2g,

u2m+1 =
� F2m+1 u� 1 � F2m+2

� F2m+2 u� 1 � F2m+3

=
� x � 1F2m+1 � y� 2F2m+2

� x � 1F2m+2 � y� 2F2m+3
;

(5.18)

u2m+2 =
� F2m+1 u0 � F2m+2

� F2m+2 u0 � F2m+3

=
y� 1F2m+2 � x � 2F2m+3

y� 1F2m+3 � x � 2F2m+4
:

(5.19)

Similarly, from ( 2.1), (5.12), and (5.17), we get that, for m 2 N0 and i 2 f 1; 2g,

v2m+1 =
� F2m+1 v� 1 + F2m+2

F2m+2 v� 1 � F2m+3

=
� y� 1F2m+1 + x � 2F2m+2

y� 1F2m+2 � x � 2F2m+3
;

(5.20)

v2m+2 =
� F2m+1 v0 + F2m+2

F2m+2 v0 � F2m+3

=
� x � 1F2m+2 � y� 2F2m+3

x � 1F2m+3 + y� 2F2m+4
:

(5.21)

By substituting the formulas in ( 5.18)-(5.21) into ( 2.27)-(2.28) and changing indexes, we
have the following results.

Theorem 5.2. Assume that (xn ; yn )n�� 2 is a well-de�ned solution of the system (5.12).
Then the following results are true.

x2m+1 =
(� 1)m+1 x � 1y� 2

y� 2F2m+3 + x � 1F2m+2
; x2m+2 =

(� 1)m+1 y� 1x � 2

� y� 1F2m+3 + x � 2F2m+4
; m � � 1;

y2m+1 =
(� 1)m+1 y� 1x � 2

x � 2F2m+3 � y� 1F2m+2
; y2m+2 =

(� 1)m x � 1y� 2

x � 1F2m+3 + y� 2F2m+4
; m � � 1;

where f Fng1
n=0 = f 0; 1; 1; 2; 3; 5; 8; 13; :::g, F� 1 = 1 .

5.3. Case b= � c = d = � =  = � = 1

We will derive the solution forms of the system (5.1) with b = � c = d = � =  = � = 1 ,
that is, the system

xn =
yn� 1xn� 2

xn� 2 � yn� 1
; yn =

xn� 1yn� 2

yn� 2 + xn� 1
; n 2 N0; (5.22)

given in [41], through analytical approach. Also, the general solutions of the system (5.22)
are expressed in terms of Fibonacci numbers. Now, to begin with, takingb = � c = d =
� =  = � = 1 in (2.12)-(2.13), we have

qm+1 � qm � qm� 1 = 0 ; m 2 N0: (5.23)
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The characteristic equation of (5.23) can be clearly obtained as of the form� 2 � � � 1 = 0
with the roots � 1 = 1+

p
5

2 = b� and � 2 = 1�
p

5
2 = b� . On the other hand, taking into

account A = 1 ; B1 = 1 ; B2 = � 1; C1 = 0 ; C2 = 2 and the Binet Formula for Fibonacci
numbers, we can rewrite the equations in (2.18)-(2.19) as for, m 2 N0 and i 2 f 1; 2g,

u2m+ i =
(� 1ui � 2 + 1) � m+1

1 � (� 2ui � 2 + 1) � m+1
2

(� 1ui � 2 + 1) � m
1 � (� 2ui � 2 + 1) � m

2
; (5.24)

v2m+ i = �
(� � 1vi � 2 + 2 � 1 + 1) � m+1

1 � (� � 2vi � 2 + 2 � 2 + 1) � m+1
2

(� � 1vi � 2 + 2 � 1 + 1) � m
1 � (� � 2vi � 2 + 2 � 2 + 1) � m

2
+ 2 ; (5.25)

for m 2 N0; i 2 f 1; 2g.
Using the relations b� b� = � 1; b� 2 + b� = 2 ; b� 2 + b� = 2 in (5.24)-(5.25) we get

u2m+ i =
( b� m+2 � b� m+2 )ui � 2 + ( b� m+1 � b� m+1 )

( b� m+1 � b� m+1 )ui � 2 + ( b� m � b� m )

=
Fm+2 ui � 2 + Fm+1

Fm+1 ui � 2 + Fm
;

(5.26)

v2m+ i =
( b� m+2 � b� m+2 )vi � 2 � ( b� m+4 � b� m+4 )

� ( b� m+1 � b� m+1 )vi � 2 + ( b� m+3 � b� m+3 )
+ 2

=
Fm+2 vi � 2 � Fm+4

� Fm+1 vi � 2 + Fm+3
+ 2

=
� Fm� 1vi � 2 + Fm+1

� Fm+1 vi � 2 + Fm+3
;

(5.27)

where Fn is n-th Fibonacci number, ui � 2 = x i � 2
yi � 3

, vi � 2 = yi � 2
x i � 3

. From (2.1), (5.22) and
(5.26), we get that, for m 2 N0 and i 2 f 1; 2g,

u2m+1 =
Fm+2 u� 1 + Fm+1

Fm+1 u� 1 + Fm

=
x � 1Fm+2 + y� 2Fm+1

x � 1Fm+1 + y� 2Fm
;

(5.28)

u2m+2 =
Fm+2 u0 + Fm+1

Fm+1 u0 + Fm

=
� y� 1Fm+1 + x � 2Fm+3

� y� 1Fm + x � 2Fm+2
:

(5.29)

Similarly, from ( 2.1), (5.22), and (5.27), we get that, for m 2 N0 and i 2 f 1; 2g,

v2m+1 =
� Fm� 1v� 1 + Fm+1

� Fm+1 v� 1 + Fm+3

=
� y� 1Fm� 1 + x � 2Fm+1

� y� 1Fm+1 + x � 2Fm+3
;

(5.30)

v2m+2 =
� Fm� 1v0 + Fm+1

� Fm+1 v0 + Fm+3

=
x � 1Fm+1 + y� 2Fm

x � 1Fm+3 + y� 2Fm+2
:

(5.31)

By substituting the formulas in ( 5.28)-(5.31) into ( 2.27)-(2.28) and changing indexes, we
have the following results.
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Theorem 5.3. Assume that (xn ; yn )n�� 2 is a well-de�ned solution of the system (5.22).
Then the following results are true.

x2m+1 =
x � 1y� 2

y� 2Fm + x � 1Fm+1
; x2m+2 =

y� 1x � 2

� y� 1Fm + x � 2Fm+2
; m � � 1;

y2m+1 =
y� 1x � 2

x � 2Fm+3 � y� 1Fm+1
; y2m+2 =

x � 1y� 2

x � 1Fm+3 + y� 2Fm+2
; m � � 1;

where f Fng1
n=0 = f 0; 1; 1; 2; 3; 5; 8; 13; :::g, F� 1 = 1 .

5.4. Case b= c = d = � = �  = � = 1

We will derive the solution forms of the system (5.1) with b = c = d = � = �  = � = 1 ,
that is, the system

xn =
yn� 1xn� 2

xn� 2 + yn� 1
; yn =

xn� 1yn� 2

yn� 2 � xn� 1
; n 2 N0; (5.32)

given in [41], through analytical approach. Also, the general solutions of the system (5.32)
are expressed in terms of Fibonacci numbers. Now, to begin with, takingb = c = d = � =
�  = � = 1 in (2.12)-(2.13), we have

qm+1 � qm � qm� 1 = 0 ; m 2 N0: (5.33)

The characteristic equation of (5.33) can be clearly obtained as of the form� 2 � � � 1 = 0
with the roots � 1 = 1+

p
5

2 = b� and � 2 = 1�
p

5
2 = b� . On the other hand, taking into

account A = 1 ; B1 = � 1; B2 = 1 ; C1 = 2 ; C2 = 0 and the Binet Formula for Fibonacci
numbers, then we can rewrite the equations in (2.18)-(2.19) as

u2m+ i = �
(� � 1ui � 2 + 2 � 1 + 1) � m+1

1 � (� � 2ui � 2 + 2 � 2 + 1) � m+1
2

(� � 1ui � 2 + 2 � 1 + 1) � m
1 � (� � 2ui � 2 + 2 � 2 + 1) � m

2
+ 2 ; (5.34)

v2m+ i =
(� 1vi � 2 + 1) � m+1

1 � (� 2vi � 2 + 1) � m+1
2

(� 1vi � 2 + 1) � m
1 � (� 2vi � 2 + 1) � m

2
; (5.35)

for m 2 N0; i 2 f 1; 2g.
Using the relations b� b� = � 1; b� 2 + b� = 2 ; b� 2 + b� = 2 in (5.14)-(5.15) we get

u2m+ i =
( b� m+2 � b� m+2 )ui � 2 � ( b� m+4 � b� m+4 )

� ( b� m+1 � b� m+1 )ui � 2 + ( b� m+3 � b� m+3 )
+ 2

=
Fm+2 ui � 2 � Fm+4

� Fm+1 ui � 2 + Fm+3
+ 2

=
� Fm� 1ui � 2 + Fm+1

� Fm+1 ui � 2 + Fm+3
;

(5.36)

v2m+ i =
( b� m+2 � b� m+2 )vi � 2 + ( b� m+1 � b� m+1 )

( b� m+1 � b� m+1 )vi � 2 + ( b� m � b� m )

=
Fm+2 vi � 2 + Fm+1

Fm+1 vi � 2 + Fm
;

(5.37)

where Fn is n-th Fibonacci number, ui � 2 = x i � 2
yi � 3

, vi � 2 = yi � 2
x i � 3

. From (2.1), (5.32), and
(5.36), we get that, for m 2 N0 and i 2 f 1; 2g,

u2m+1 =
� Fm� 1u� 1 + Fm+1

� Fm+1 u� 1 + Fm+3

=
� x � 1Fm� 1 + y� 2Fm+1

� x � 1Fm+1 + y� 2Fm+3
;

(5.38)
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u2m+2 =
� Fm� 1u0 + Fm+1

� Fm+1 u0 + Fm+3

=
y� 1Fm+1 + x � 2Fm

y� 1Fm+3 + x � 2Fm+2
:

(5.39)

Similarly, from ( 2.1), (5.32), and (5.37), we get that, for m 2 N0 and i 2 f 1; 2g,

v2m+1 =
Fm+2 v� 1 + Fm+1

Fm+1 v� 1 + Fm

=
y� 1Fm+2 + x � 2Fm+1

y� 1Fm+1 + x � 2Fm
;

(5.40)

v2m+2 =
Fm+2 v0 + Fm+1

Fm+1 v0 + Fm

=
� x � 1Fm+1 + y� 2Fm+3

� x � 1Fm + y� 2Fm+2
:

(5.41)

By substituting the formulas in ( 5.38)-(5.41) into ( 2.27)-(2.28) and changing indexes, we
have the following results.

Theorem 5.4. Assume that (xn ; yn )n�� 2 is a well-de�ned solution of the system (5.32).
Then the following results are true.

x2m+1 =
x � 1y� 2

y� 2Fm+3 � x � 1Fm+1
; x2m+2 =

y� 1x � 2

y� 1Fm+3 + x � 2Fm+2
; m � � 1;

y2m+1 =
y� 1x � 2

x � 2Fm + y� 1Fm+1
; y2m+2 =

x � 1y� 2

� x � 1Fm + y� 2Fm+2
; m � � 1;

where f Fng1
n=0 = f 0; 1; 1; 2; 3; 5; 8; 13; :::g, F� 1 = 1 .
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1. Introduction

Let T := [0 ; 2� ], T2 := T � T, and L p
! := L p

!
�
T2�

be the weighted Lebesgue space of
functions f (x; y) : T2 ! R, 2� -periodic with respect to each variablex; y, and

kf kp
p;! :=

Z

T2
jf (x; y)jp ! (x; y) dxdy < 1 :

A function ! : T2 ! [0; 1 ) is called a weight onT2 if ! (x; y) is measurable and positive
almost everywhere onT2. We denote by Ap := Ap

�
T2; J

�
, 1 < p < 1 , the collection of

locally integrable weight functions ! such that ! (x; y) is 2� -periodic with respect to each
variable x; y and

C := sup
G2 J

1
jGj

Z

G

! (x; y) dxdy

0

@ 1
jGj

Z

G

[! (x; y)]
� 1

p� 1 dxdy

1

A

p� 1

< 1 ; (1.1)

whereJ is the set of rectangles inT2 with sides parallel to coordinate axes. Least constant
C in (1.1) will be called the Muckenhoupt's constant of ! and denoted by [! ]A p

. In the
present paper we considered approximation properties of the two dimensional Fourier se-
ries in Lebesgue spacesL p

! with weights ! belonging to the Muckenhoupt's classAp. We
consider a weighted mixed modulus of smoothness and obtain several angular trigonomet-
ric approximation inequalities involving angular trigonometric approximation errors and
modulus of smoothness inL p

! with ! 2 Ap, 1 < p < 1 .

Email address: rakgun@balikesir.edu.tr
Received: 23.05.2019; Accepted: 27.11.2019
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In the nonweighted case, onT2, with the classical nonweighted mixed modulus of
smoothness of functions given in the classical Lebesgue spacesL p := L p �

T2�
; approxi-

mation by "angle" were investigated by several mathematicians. One can see the papers
([16� 20]) written by M. K. Potapov. Also in the works [ 22,24], transformed Fourier series
and mixed modulus of smoothness were investigated. Embedding problems of the Besov-
Nikolskii and Weyl-Nikolskii classes are studied in [21,23]. Ul'yanov type inequalities were
considered in [25] and [26]. Mixed K -functionals were considered by C. Cottin in [8]. For
the univariate case one can see the papers [10,12� 14,29].

In the weighted spaces, generally, ordinary translation is not suitable to construct dif-
ference operator and modulus of smoothness. The modulus of smoothness de�ned here is
applicable in some weighted spaces.

Let

Ym1 ;m 2 (f )p;! = inf
Ti

8
<

:






f �

2X

i =1

Ti







p;!

: Ti 2 Tm i

9
=

;
;

whereTm i is the set of all two dimensional trigonometric polynomial of degree at mostmi
with respect to variable x i (i = 1 ; 2).

De�ne the following Steklov averages

� h;� f (x; y) :=
1
h

x+ h=2Z

x� h=2

f (t; y ) dt; � � ;k f (x; y) :=
1
k

y+ k=2Z

y� k=2

f (x; � ) d�;

� h;k f (x; y) :=
1

hk

x+ h=2Z

x� h=2

y+ k=2Z

y� k=2

f (t; � ) dtd�;

� 0;� f (x; y) = � � ;0f (x; y) = � 0;0f (x; y) := f (x; y) :

Let x; y 2 T, r; h; k > 0, p 2 (1; 1 ), ! 2 Ap, and f 2 L p
! . De�ne the quantities

5 r; �
h;� f (x; �) : = ( I � � h;� )r f (x; �) =

1X

i =0

 
r
i

!

(� 1)i (� h;� f ) i (x; �) (1.2)

5 � ;r
� ;k f (�; y) : = ( I � � � ;k )r f (�; y) =

1X

j =0

 
r
j

!

(� 1)j (� � ;k f ) j (�; y) (1.3)

5 r;r
h;k f (x; y) : = 5 r; �

h;�

�
5 � ;r

� ;k f
�

(x; y) (1.4)

where I is identity operator on T2,
� r

j

�
:= r (r � 1):::(r � j +1)

j ! for j > 1,
� r

1

�
:= r and

� r
0

�
:= 1

are binomial coe�cients.

De�nition 1.1. The fractional weighted mixed modulus of smoothness off 2 L p
! ; 1 <

p < 1 ; ! 2 Ap, r 2 f 0g [ R+ , de�ned as


 r (f; � 1; � 2)p;! =

8
<

:

sup
h;k

f


 5 r;r

h;k f




p;!
: 0 � h � � 1,0 � k � � 2g , r > 0,

kf kp;! , r = 0 .
(1.5)

In the present work we obtain main properties of the weighted fractional order mixed
modulus of smoothness (1.5). The �rst of them is given in following approximation error
estimate (direct theorem of angular trigonometric approximation):
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Theorem 1.2. If 1 < p < 1 ; ! 2 Ap, f 2 L p
! and r 2 R+ , then there exists a constant

C[! ]A p
;p;r depending only on Muckenhoupt's constant[! ]A p

of ! and p; r such that

Ym1 ;m 2 (f )p;! � C[! ]A p
;p;r 
 r

�
f;

1
m1

;
1

m2

�

p;!
(1.6)

holds for m1; m2 2 N.

We use the notation for fractional Weyl type derivatives f (r;s ) := @r + s f
@xr @ys ; f (r; � ) := @r f

@xr ;

f (� ;s) := @s f
@ys . Let W r;s

p;! , r; s 2 N, (respectively W r; �
p;! ; W � ;s

p;! ) be denote the collection of

integrable functions f with f (r;s ) 2 L p
! (respectively f (r; � ) 2 L p

! ; f (� ;s) 2 L p
! ).

De�nition 1.3. The quantity

K (f; �; �; p; !; r; s ) := inf
g1 ;g2 ;g

(

kf � g1 � g2 � gkp;! + � r





@r g1

@xr






p;!
+

+ � s





@sg2

@ys






p;!
+ � r � s







@r + sg
@xr @ys







p;!

9
=

;

is known as weighted mixedK -functional, where in�mum is taken over g1; g2; g so that
g1 2 W r; �

p;! , g2 2 W � ;s
p;! , g 2 W r;s

p;! , where r; s 2 R+ := (0 ; 1 ), 1 < p < 1 ; ! 2 Ap, f 2 L p
! .

By Theorem 1.2 we get the following equivalence between
 r (f; � 1; � 2)p;! and mixed
K -functional.

Theorem 1.4. If 1 < p < 1 , ! 2 Ap, f 2 L p
! , and r 2 R+ , then there exist constants

c[! ]A p
;p;r > 0, C[! ]A p

;p;r > 0, depending only on Muckenhoupt's constant[! ]A p
of ! and

p; r, so that the equivalence


 r (f; � 1; � 2)p;! � C[! ]A p
;p;r K (f; � 1; � 2; p; !; 2r ) � c[! ]A p

;p;r 
 r (f; � 1; � 2)p;!

holds for � 1; � 2 � 0:

Theorem 1.4 gives the following corollary.

Corollary 1.5. If 1 < p < 1 ; ! 2 Ap, f 2 L p
! , and r 2 R+ then, there exist constants

depending only on[! ]A p
and p; r such that


 r (f; ��; �� )p;! � c(1 + b� c)2r (1 + b� c)2r 
 r (f; �; � )p;! ; �; � > 0;


 r (f; � 1; � 2)p;!

� 2r
1 � 2r

2
� C


 r (f; t 1; t2)p;!

t2r
1 t2r

2
for 0 < t i � � i ; i = 1 ; 2

where bxc := max f z 2 Z : z � xg.

Converse estimate to (1.6) is given in the next theorem.

Theorem 1.6. If 1 < p < 1 ; ! 2 Ap, f 2 L p
! and r 2 R+ , then there exist constants

depending only on[! ]A p
and p; r so that


 r

�
f;

1
m1

;
1

m2

�

p;!
�

C[! ]A p
;p;r

Q 2
i =1 m2r

i

m1X

l i 1 =0

m2X

l i 2 =0

2Y

j =1

h�
l i j + 1

�i 2r � 1
Yl i 1 ;l i 2

(f )p;! :

In this paper, we will denote positive constantCu;v;::: , depending only on the parameters
u; v; : : : so that it can be di�erent in di�erent places.
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2. Preliminary de�nition and results

Suppose that L 1 is the collection of the Lebesgue integrable functionsf (x; y) : T2 !
(�1 ; 1 ) such that f (x; y) is 2� -periodic with respect to each variablex; y respectively.
Let Tm; � (respectively T� ;n ) be the set of all trigonometric polynomial of degree at most
m (at most n) with respect to variable x (variable y). We set Tm;n as the collection of all
trigonometric polynomial of degree at mostm with respect to variable x and of degree at
most n with respect to variable y: The best angular trigonometric approximation error is
de�ned as

Ym;n (f )p;! = inf
n

kf � T � Ukp;! : T 2 Tm; � ; U 2 T� ;n

o

where 1 < p < 1 , ! 2 Ap, and f 2 L p
! .

Using [15, Theorem 6] we have


 f � C �

m;n f




p;!
! 0, as m; n ! 1 ;

where C �
m;n f is � th Cesàro mean off . From this we can obtain that C

�
T2�

, the class of
continuous functions on T2, is a dense subset ofL p

! for 1 < p < 1 ; ! 2 Ap. Then

Ym;n (f )p;! � C[! ]A p
;p;r



 f � C �

m;n f




p;!
! 0

and hence
Ym;n (f )p;! & 0, as m; n ! 1 :

This shows that approximation problems make sense inL p
! for 1 < p < 1 ; ! 2 Ap:

De�ne Steklov type operators

S�;� ;� f (x; y) := �
Z x+ � +1 =(2� )

x+ � � 1=(2� )
f (u; y)du;

S� ;�;� f (x; y) := �
Z y+ � +1 =(2� )

y+ � � 1=(2� )
f (x; v)dv;

S�;� ;�;� f (x; y) = S�;� ;� (S� ;�;� f (x; y)) = ��
Z x+ � +1 =(2� )

x+ � � 1=(2� )

Z y+ � +1 =(2� )

y+ � � 1=(2� )
f (u; v)dudv:

Theorem 2.1. We suppose that1 < p < 1 and ! 2 Ap.

(i) If 1 � � < 1 and j� j � �� � 1, then, the family of operators f S�;� ;� g1� �< 1 is
uniformly bounded (in �; � ) in L p

! :

kS�;� ;� f kp;! � 108
1
p �

2
p [! ]

1
p
A p

kf k
p;!

:

(ii) If 1 � � < 1 and j� j � �� � 1, then, the family of operators f S� ;�;� g1� �< 1 is
uniformly bounded (in �; � ) in L p

! :

kS� ;�;� f k
p;!

� 108
1
p �

2
p [! ]

1
p
A p

kf k
p;!

:

(iii) If 1 � �; � < 1 , j� j � �� � 1, j� j � �� � 1, then, the family of operatorsf S�;� ;�;� g1� �;�< 1
is uniformly bounded (in �; � and �; � ) in L p

! :

kS�;� ;�;� f kp;! � 108
2
p �

4
p [! ]

2
p
A p

kf kp;! :

In this case Theorem2.1 yields the following lemma.

Lemma 2.2 ([11, Theorem 3.3], [4]). If 1 < p < 1 ; ! 2 Ap, and f 2 L p
! , then

n
k� h;k f kp;! ; k� h;� f kp;! ; k� � ;k f kp;!

o
� C[! ]A p

;p kf kp;! ; (2.1)

with constants depend only on[! ]A p
and p.



1598 R. Akgün

2.1. Transference result

At this stage we will need a transference result. Iff is 2� periodic locally integrable
function on T2, then (see Theorem 11.1 on page 211 of [9])

lim
(h;k )! (0;0)

1
hk

x+ h=2Z

x� h=2

y+ k=2Z

y� k=2

f (t; � ) dtd� = f (x; y)

for almost every (x; y) 2 T2. Then, for any � > 0 one can �nd h0; k0 � 1 such that

S 1
h 0

;0; 1
k 0

;0f (x; y) =
1

h0k0

x+ h0=2Z

x� h0=2

y+ k0=2Z

y� k0=2

f (t; � ) dtd� > f (x; y) � � (2.2)

almost every (x; y) 2 T2: Throughout this work we will �x these h0; k0.
Let 1 < p < 1 , ! 2 Ap, f 2 L p

! ,

q :=
p

p � 1
; (2.3)

G 2 L q
!

�
T2

�
; kGkq;! = 1

and de�ne, with h0; k0 of (2.2),

Ff (u; v) :=
Z

T2

S 1
h 0

;0; 1
k 0

;0f (x + u; y + v) jG (x; y)j ! (x; y) dxdy

for u; v 2 T satisfying juj � h0; jvj � k0:
Let ~Ff (u; v) be a continuous function de�ned on T2 such that
i) ~Ff (u; v) coincides with Ff (u; v) on

I k0
h0

:=
n

(u; v) 2 T2 : juj � h0; jvj � k0

o
:

ii) max(u;v )2 T2

�
�
� ~Ff (u; v)

�
�
� � max

(u;v )2 I k 0
h 0

jFf (u; v)j :

Let C
�
T2�

denote the collection of continuous functionsf : T2 ! R with

kf kC(T2 ) := max fj f (x; y)j : x; y 2 Tg < 1 :

Lemma 2.3. If 1 < p < 1 , ! 2 Ap and f 2 L p
! , then the function Ff (u; v), de�ned

above, is uniformly continuous onI k0
h0

:

Lemma 2.4. Let 1 < p < 1 , q := p=(p � 1) and  be a weight onT2. Then

sup
G2 L q

! :kGkq;! =1

Z

T2

f (x; y) G (x; y) ! (x; y) dxdy = kf kp;! (2.4)

for f 2 L p
! :

Theorem 2.5. If 1 < p < 1 , ! 2 Ap, f ,g 2 L p
! and

kFgk
C

�
I k 0

h 0

� � ckFf k
C

�
I k 0

h 0

� ;

then

kgkp;! � c108
2
p �

4
p [! ]

2
p
A p

kf kp;! :
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2.2. Fractional order modulus of smoothness

Now, we consider the fractional smoothness
 r (�; �; � )p;! , r > 0, suitable for some
weighted spaces. Note that classical non-weighted fractional smoothness! r (f; �)p, r > 0,
was de�ned by P. L. Butzer, H. Dyckho�, E. Görlich, R. L. Stens [ 7], and R. Taberski [28]
and may be some others. See also [27].

Firstly we discuss boundedness of Steklov operators.

Remark 2.6. (i) If F 2 C
�
T2�

then we know that

k� h;� FkC(T2 ) � k FkC(T2 ) ; k� � ;kFkC(T2 ) � k FkC(T2 ) ; k� h;k FkC(T2 ) � k FkC(T2 ) :

Hence 

 5 r; �

h;� F




C(T2 )
� 2r kFkC(T2 ) ;



 5 � ;r

� ;kF




C(T2 )
� 2r kFkC(T2 )

and these give that 

 5 r;r

h;k F




C(T2 )
� 22r kFkC(T2 )

for F 2 C
�
T2�

:
(ii) Using (i)



 F5 r; �

h; � F





C
�

I k 0
h 0

� = max
u;v2 I k 0

h 0

�
�
�
�
�
�

Z

T2

5 r; �
h;� S 1

h 0
;0; 1

k 0
;0F (x + u; y + v) jG (x; y)j ! (x; y) dxdy

�
�
�
�
�
�

= max
u;v2 I k 0

h 0

�
�
�
�
�
�
5 r; �

h;�

Z

T2

S 1
h 0

;0; 1
k 0

;0F (x + u; y + v) jG (x; y)j ! (x; y) dxdy

�
�
�
�
�
�

= max
u;v2 I k 0

h 0

�
�
�5 r; �

h;� FF

�
�
�

� 2r max
u;v2 I k 0

h 0

jFF j = 2 r kFFk
C

�
I k 0

h 0

� :

The same method gives that


 F5 � ;r

� ;k F





C
�

I k 0
h 0

� � 2r kFFk
C

�
I k 0

h 0

� :

Using the last two inequalities we �nd


 F5 r;r

h;k F





C
�

I k 0
h 0

� � 22r kFFk
C

�
I k 0

h 0

� :

Using Theorem 2.5 we �nd


 5 r; �

h;� f




p;!
� 108

2
p �

4
p [! ]

2
p
A p

2r kf kp;! ;


 5 � ;r

� ;k f




p;!
� 108

2
p �

4
p [! ]

2
p
A p

2r kf kp;! (2.5)

and, therefore


 5 r;r

h;k f




p;!
� 22r 108

4
p �

8
p [! ]

4
p
A p

kf kp;! (2.6)

for f 2 L p
! :

The last remark implies the following.

Corollary 2.7. Let p 2 (1; 1 ), ! 2 Ap, r 2 R+ and f 2 L p
! : Then

(i) There exists a constantCp;!;r > 0, independent ofh; k; such that
� 


 5 r; �

h;� f




p;!
;


 5 � ;r

� ;k f




p;!
;


 5 r;r

h;k f




p;!

�
� Cp;!;r kf kp;! (2.7)

holds for r > 0.
(ii) There holds


 r (f; � 1; � 2)p;! � C[! ]A p
;p;r kf kp;!

with constant depending only on[! ]A p
and p; r.
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(iii) 
 r (f; 0; 0)p;! = 0 :
(iv) 
 r (f; � 1; � 2)p;! is subadditive with respect tof .
(v) 
 r (f; � 1; � 2)p;! � 
 r (f; t 1; t2)p;! for 0 � � i � t i ; i = 1 ; 2.

2.3. Some means of Fourier series

Let 1 < p < 1 ; ! 2 Ap, and f 2 L p
! ; then one can �nd a p� 2 (1; 1 ) with f 2 L p� �

T2�
.

Hence,

L p
! � L p�

:

Let 1 < p < 1 ; ! 2 Ap and

1X

n1=0

1X

n2=0

An1 ;n2 (x; y) (2.8)

be the corresponding Fourier series forf 2 L p
! � L 1. For the Fourier series (2.8) of f 2 L p

! ;
1 < p < 1 ; ! 2 Ap we de�ne

Sm; � (f ) (x; y) =
mX

n1=0

1X

n2=0

An1 ;n2 (x; y; f ) ; S� ;n (f ) (x; y) =
1X

n1=0

nX

n2=0

An1 ;n2 (x; y; f ) ;

Sm;n (f ) (x; y) = Sm; � (S� ;n (f )) ( x; y) =
mX

n1=0

nX

n2=0

An1 ;n2 (x; y; f ) ;

and de la Valleè Poussin means off

Vm; � (f ) =
1

m + 1

2m� 1X

k= m

Sk;� (f ) ; V� ;n (f ) =
1

n + 1

2n� 1X

l= n

S� ;l (f ) ; (2.9)

Vm;n (f ) = Vm; � (V� ;n (f )) =
1

(n + 1) ( m + 1)

2m� 1X

k= m

2n� 1X

l= n

Sk;l (f ) : (2.10)

In what follows, A . B will mean that the inequality A � CB holds. If A . B and
B . A we will write A � B .

Lemma 2.8 ([4]). If 1 < p < 1 ; ! 2 Ap, f 2 L p
! , then

(i)
n

kSm; � (f )kp;! ; kS� ;n (f )kp;! ; kSm;n (f )kp;!

o
. kf kp;! ;

(ii)
n

kVm; � (f )kp;! ; kV� ;n (f )kp;! ; kVm;n (f )kp;!

o
. kf kp;! ;

(iii)

kf � Wm;n f kp;! . Ym;n (f )p;!

where

Wm;n f (x; y) := ( Vm; � (f ) + V� ;n (f ) � Vm;n (f )) ( x; y)

and all constants depending only on[! ]A p
and p.
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2.4. Bernstein inequalities

Lemma 2.9 (Bernstein's Inequality, [4]). If 1 < p < 1 ; ! 2 Ap, T1 2 Tm; � ; T2 2 T� ;n ; T3 2
Tm;n , j ,l 2 N, then



 T (j; � )

1





p;!
. mj kT1kp;! ,



 T (� ;l )

2





p;!
. nl kT2kp;! ;

and, as a result, 

 T (j;l )

3





p;!
. mj nl kT3kp;!

with constants depending only on[! ]A p
and p.

Suppose thatk � kL p
!

is the one dimensional norm inL p
! (T),

� h f (x) :=
1

2h

Z x+ h

x� h
f (t) dt;

and Un is the collection of all one dimensional trigonometric polynomial of degree at most
n.

Lemma 2.10 ([3]). Let r 2 R+ , n 2 N, p 2 (1; 1 ), ! 2 Ap and Un 2 Un . Then

h2r


 U(2r )

n





L p
!

. k(I � � h)r UnkL p
!

holds for any h 2 (0; �=n ] with some constant depending only onr; p and [! ]A p
.

From the last lemma we obtain that if Tm 2 Um then

0

@
Z

T

�
�
�T (r )

m (x)
�
�
�
p

! (x) dx

1

A

1=p

. mr

0

@
Z

T

�
�
�
�

h
Tm (x) � � 1

m
Tm (x)

i r=2
�
�
�
�

p

! (x) dx

1

A

1=p

. mr

0

@
Z

T

jTm (x)jp ! (x) dx

1

A

1=p

and, accordingly
Z

T

�
�
�T (r )

m (x)
�
�
�
p

! (x) dx . mrp
Z

T

jTm (x)jp ! (x) dx: (2.11)

Lemma 2.11 (Fractional Bernstein Inequality) . Let 1 < p < 1 ; ! 2 Ap, T1 2 Tm; � ; T2 2
T� ;n ; T3 2 Tm;n , j; l 2 R+ : Then



 T (j; � )

1





p;!
. mj kT1kp;! ;



 T (� ;l )

2





p;!
. nl kT2kp;! ;

and, as a result, 

 T (j;l )

3





p;!
. mj nl kT3kp;!

with constants depending only on[! ]A p
and p.

As a corollary of Lemma 2.11 and [4] we have the following lemma.

Lemma 2.12. For 1 < p < 1 ; ! 2 Ap, f 2 L p
! , &; l 2 R+ there exists a constant

depending only on[! ]A p
and p so that



 [' i;j (f )](&;l)





p;!
. 2i&2jl Yb2i � 1c;b2j � 1c (f )p;! ;



 [ i;j (f )](&;� )





p;!
. 2i&Yb2i � 1c;2j (f )p;! ,



 [hi;j (f )](� ;l )





p;!
. 2jl Y2i ;b2j � 1c (f )p;! ;
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where

V2i ;2j (f ) � V2i ;b2j � 1c (f ) � Vb2i � 1c;2j (f ) + Vb2i � 1c;b2j � 1c (f ) =: ' i;j (f ) 2 T2i +1 � 1;2j +1 � 1;

V2i ;�

�
f � V� ;2j (f )

�
� Vb2i � 1c;�

�
f � V� ;2j (f )

�
=:  i;j (f ) 2 T2i +1 � 1;� ;

V� ;2j

�
f � V2i ;� (f )

�
� V� ;b2j � 1c

�
f � V2i ;� (f )

�
=: hi;j (f ) 2 T� ;2j +1 � 1:

3. Favard inequalities

Lemma 3.1. Let 1 < p < 1 ; ! 2 Ap, and r 2 R+ . Then, there exist constants depending
only on [! ]A p

and p; r such that

Ym;n (g1)p;! . (m + 1) � 2r


 g(2r; � )

1





p;!
, g1 2 W 2r; �

p;! ; (3.1)

Ym;n (g2)p;! . (n + 1) � 2r


 g(� ;2r )

2





p;!
, g2 2 W � ;2r

p;! ;

Ym;n (g)p;! . (m + 1) � 2r (n + 1) � 2r


 g(2r; 2r )





p;!
, g 2 W 2r; 2r

p;! : (3.2)

Theorem 3.2 ([5]). Let 1 < p < 1 ; ! 2 Ap, f 2 L p
! , and r 2 N. Then there exist

constants depending only on[! ]A p
and p; r so that


 r (g1; �; �)p;! . � 2
 r � 1

�
g(2;� )

1
; �; �

�

p;!
, g1 2 W 2;�

p;! ; (3.3)


 r (g2; �; � )p;! . � 2
 r � 1

�
g(� ;2)

2
; �; �

�

p;!
, g2 2 W � ;2

p;! ; (3.4)


 r (g; �; � )p;! . � 2� 2
 r � 1

�
g(2;2) ; �; �

�

p;!
, g 2 W 2;2

p;! ; (3.5)

hold for �; � > 0:

Corollary 3.3. Let 1 < p < 1 ; m; n 2 N; ! 2 Ap, and r 2 R+ . Then there exist
constants depending only on[! ]A p

and p; r such that


 r (T1; �= (m + 1) ; �)p;! . (m + 1) � 2r


 T (2r; � )

1





p;!
, T1 2 Tm; � ,


 r (T2; �; �= (n + 1)) p;! . (n + 1) � 2r


 T (� ;2r )

2





p;!
, T2 2 T� ;n , and


 r (T3; �= (m + 1) ; �= (n + 1)) p;! . ((m + 1) ( n + 1)) � 2r


 T (2r; 2r )

3





p;!
, T3 2 Tm;n

hold.

For r = 1 Corollary 3.3 was proved in [4].

4. Proof of the results

Proof of Theorem 2.1 . From [6, Th.10] we have, for almost everyy;
Z

T

jS�;� ;� f (x; y)jp ! (x; y) dx � 108� 2 [! ]A p

Z

T

jf (x; y)jp ! (x; y) dx:

The last inequality imply that
Z

T2

jS�;� ;� f (x; y)jp ! (x; y) dxdy � 108� 2 [! ]A p

Z

T2

jf (x; y)jp ! (x; y) dxdy;

kS�;� ;� f kp;! � 108
1
p �

2
p [! ]

1
p
A p

kf kp;! :

Completely similar arguments give

kS� ;�;� f kp;! � 108
1
p �

2
p [! ]

1
p
A p

kf kp;! :



Fractional order mixed di�erence operator 1603

Summing up obtained inequalities

kS�;� ;�;� f kp;! = kS�;� ;� (S� ;�;� f )kp;!

� 108
1
p �

2
p [! ]

1
p
A p

kS� ;�;� f kp;! � 108
2
p �

4
p [! ]

2
p
A p

kf kp;!

as desired. �

Proof of Lemma 2.3 . SinceC
�
T2�

is a dense subset off 2 L p
! , 1 < p < 1 , ! 2 Ap, we

consider only the casef 2 C
�
T2�

. Let 0 < h; k � 1 be given. Suppose thatu; v 2 I k0
h0

and
" > 0. When max fj u1j ; jv1jg ! 0 we havex + u + u1 ! x + u and y + v + v1 ! y + v:
Also

� h;k f (x + u + u1; y + v + v1) ! � h;k f (x + u; y + v) :
Then one can �nd a � (" ) > 0 so that

j� h;k f (x + u + u1; y + v + v1) � � h;k f (x + u; y + v)j < "

for ju1j ; jv1j < �: Hence,
jFf (u + u1; v + v1) � Ff (u; v)j

=

�
�
�
�
�
�

Z

T2

[� h;k f (x + u + u1; y + v + v1) � � h;k f (x + u; y + v)] jG (x; y)j ! (x; y) dxdy

�
�
�
�
�
�

� "
Z

T2

jG (x; y)j ! (x; y) dxdy � " k! k1=p
1;1 kGkq;! = " k! k1=p

1;1

for ju1j ; jv1j < �: A density result now give that Ff (u; v) is uniformly continuous on I k0
h0

:
From this we can write

~Ff (u; v) 2 C
�
T2

�
:

�

Proof of Lemma 2.4 . (2.4) is known (see e.g., Proposition 3.1 of [9, p.250] for any
measured� :

sup
G2 L q;d� :kGkq;d� =1

Z

T2

f (x; y) G (x; y) d� = kf kp;d�

When d� = ! (x; y) dxdy (2.4) also holds. �

Proof of Theorem 2.5 . Let 0 < h; k � 1, ! 2 Ap, 1 < p < 1 and f; g 2 L p
! . In this

case

kFgk
C

�
I k 0

h 0

� � ckFf k
C

�
I k 0

h 0

�

= c








Z

T2

S 1
h 0

;0; 1
k 0

;0f (x + u; y + v) jG (x; y)j ! (x; y) dxdy








C
�

I k 0
h 0

�

= c

�
�
�
�
�
�

max
u;v2 I k 0

h 0

Z

T2

S 1
h 0

;0; 1
k 0

;0f (x + u; y + v) jG (x; y)j ! (x; y) dxdy

�
�
�
�
�
�

� c max
u;v2 I k 0

h 0




 S 1

h 0
;0; 1

k 0
;0f (� + u; � + v)






p;!
kGkq;!

� c max
u;v2 I k 0

h 0




 S 1

h 0
;u; 1

k 0
;v






L p
! ! L p

!

kf kp;! , (by Theorem 2.1)

� c108
2
p �

4
p [! ]

2
p
A p

kf kp;! :
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On the other hand, for any " > 0 and appropriately chosenG 2 L q
!

�
T2�

with hg; Gi =R

T2
g(x; y) G (x; y) ! (x; y) dxdy � k gkp;! � " , kGkq;! = 1 , (see Lemma2.4 above), one can

�nd

kFgk
C

�
I k 0

h 0

� � j Fg (0; 0)j �
Z

T2

S 1
h 0

;0; 1
k 0

;0g(x; y) jG (x; y)j ! (x; y) dxdy

�
Z

T2

g(x; y) jG (x; y)j ! (x; y) dxdy � �
Z

T2

jG (x; y)j ! (x; y) dxdy

� k gkp;! � " � � k! k1=p
1;1 :

Since"; � > 0 is arbitrary, from the last inequality, we have

kFgk
C

�
I k 0

h 0

� � k gkp;!

and hence

kgkp;! � k Fgk
C

�
I k 0

h 0

� � ckFf k
C

�
I k 0

h 0

� � c108
2
p �

4
p [! ]

2
p
A p

kf kp;! :

This gives required result. �

Proof of Theorem 2.7 . Inequalities (2.7) hold with ( 2.5)-(2.6). �

Proof of Lemma 2.11 . From (2.11), we have for almost everyy
Z

T

�
�
�T (j; � )

1 (x; y)
�
�
�
p

! (x; y) dx . mjp
Z

T

jT1 (x; y)jp ! (x; y) dx:

Hence Z

T2

�
�
�T (j; � )

1 (x; y)
�
�
�
p

! (x; y) dxdy . mjp
Z

T2

jT1 (x; y)jp ! (x; y) dxdy;



 T (j; � )

1





p;!
. mj kT1kp;! :

From (2.11), we have for almost everyx
Z

T

�
�
�T (� ;l )

2 (x; y)
�
�
�
p

! (x; y) dy . nlp
Z

T

jT2 (x; y)jp ! (x; y) dy:

Then Z

T2

�
�
�T (� ;l )

2 (x; y)
�
�
�
p

! (x; y) dxdy . nlp
Z

T2

jT2 (x; y)jp ! (x; y) dxdy;



 T (� ;l )

2





p;!
. nl kT2kp;!

holds. �

Proof of Lemma 3.1 . We consider (3.1). We have

kg1 � Sm; � (g1) � S� ;n (g1) + Sm;n (g1)kp;! =








1X

i = m+1

1X

j = n+1

A i;j (x; y; g1)








p;!

=








1X

i = m+1

1X

j = n+1

1
i 2r i 2r A i;j

�
x +

�
2

; y; g1

�
cos�








p;!

=







�

1X

i = m+1

1X

j = n+1

1
i 2r A i;j

�
x; y; g(2r; � )

1

�







p;!
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=








1X

i = m+1

1X

j = n+1

h
Si;j

h
g(2r; � )

1

i
� Si;j � 1

h
g(2r; � )

1

i
� Si � 1;j

h
g(2r; � )

1

i
+ Si � 1;j � 1

h
g(2r; � )

1

ii

i 2r








p;!

=








1X

i = m+1

"
1

(i + 1) 2r �
1

i 2r

#

Si;m

�
g(2r; � )

1

�
+

1

(m + 1) 2 Sm;n

�
g(2r; � )

1

�







p;!

�
1X

i = m+1

�
�
�
�
�

1

(i + 1) 2r �
1

i 2r

�
�
�
�
�



 Si;m

�
g(2r; � )

1

� 



p;!
+

1

(m + 1) 2r



 Sm;n

�
g(2r; � )

1

� 



p;!

�


 g(2r; � )

1





p;!

0

@
1X

i = m+1

 
1

i 2r �
1

(i + 1) 2r

!

+
1

(m + 1) 2r

1

A �
C

(m + 1) 2r



 g(2r; � )

1





p;!
:

Using
Ym;n (g1)p;! = Ym;n (g1 � Sm; � (g1) � S� ;n (g1) + Sm;n (g1))p;!

� k g1 � Sm; � (g1) � S� ;n (g1) + Sm;n (g1)kp;!

one can �nd (3.1). The same method give

kg2 � S� ;n (g2) � Sm; � (g2) + Sm;n (g2)kp;! .
1

(n + 1) 2r



 g(� ;2r )

2





p;!

and
Ym;n (g2)p;! = Ym;n (g2 � S� ;n (g2) � Sm; � (g2) + Sm;n (g2))p;!

� k g1 � S� ;n (g1) � Sm; � (g1) + Sm;n (g1)kp;! .
1

(n + 1) 2r



 g(� ;2r )

2





p;!
:

Considering (3.2), we �nd

kg � Sm; � (g) � S� ;n (g) + Sm;n (g)kp;!

=








1X

i = m+1

1X

j = n+1

A i;j (x; y; g)








p;!

=








1X

i = m+1

1X

j = n+1

i 2r j 2r

i 2r j 2r A i;j

�
x +

�
2

; y +
�
2

; g
�

cos2 �








p;!

=








1X

i = m+1

1X

j = n+1

1
i 2r j 2r A i;j

�
x; y; g(2r; 2r )

�







p;!

=








1X

i = m+1

1X

j = n+1

1
i 2r j 2r A i;j (x; y; �)








p;!

=








1X

i = m+1

1X

j = n+1

1
i 2r j 2r (Si;j (�) � Si;j � 1 (�) � Si � 1;j (�) + Si � 1;j � 1 (�))








p;!

=








1X

i = m+1

1X

j = n+1

"
1

(i + 1) 2r �
1

i 2r

# "
1

(j + 1) 2r �
1

j 2r

#

Si;j (�) +

+
1

(m + 1) 2r

1X

j = n+1

"
1

(j + 1) 2r �
1

j 2r

#

Sm;j (�) +
1

(n + 1) 2r

1X

i = n+1

"
1

(i + 1) 2r �
1

i 2r

#

Si;n (�)

+
1

(m + 1) 2r
1

(n + 1) 2r Sm;n (�)







p;!

�
1X

i = m+1

1X

j = n+1

 
1

i 2r �
1

(i + 1) 2r

!  
1

j 2r �
1

(j + 1) 2r

!

kSi;j (�) kp;! +

+
1

(m + 1) 2r

1X

j = n+1

"
1

j 2r �
1

(j + 1) 2r

#

kSm;j (�) kp;! +
1

(n + 1) 2r �
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�
1X

i = m+1

"
1

i 2r �
1

(i + 1) 2r

#

kSi;n (�) kp;! +
1

(m + 1) 2r
1

(n + 1) 2r kSm;n (�) kp;!

.
1

(m + 1) 2r (n + 1) 2r k� kp;! =
1

(m + 1) 2r (n + 1) 2r



 g(2r; 2r )





p;!
;

and, hence,
Ym;n (g)p;! = Ym;n (g � Sm; � (g) � S� ;n (g) + Sm;n (g))p;!

� k g � Sm; � (g) � S� ;n (g) + Sm;n (g)kp;! .
1

(m + 1) 2r (n + 1) 2r



 g(2r; 2r )





p;!

which completes the proof. �

Here we give the proof of Potapov type Theorem1.2.

Proof of Theorem 1.2 . For r 2 N, this was obtained in [5]:

Ym;n (f )p;! � Cp;r; [! ]A p

 r

�
f;

1
m

;
1
n

�

p;!
: (4.1)

We suppose thatr 2 R+ nN: For 0 � � � � � 1
Z

T

�
�
�[I � � h;� ]� f (x; y)

�
�
�
p

! (x; y) dx .
Z

T

j[I � � h;� ]� f (x; y)jp ! (x; y) dx; for almost everyy;

Z

T

�
�
�[I � � � ;k ]� f (x; y)

�
�
�
p

! (x; y) dx .
Z

T

j[I � � � ;k ]� f (x; y)jp ! (x; y) dx; for almost everyx;

were proved in [1, (2.5)]. The same proof also holds for0 � � � � < 1 : Hence


 � (f; �; :)p;! . 
 � (f; �; :)p;! :

From (4.1) and the last inequality we have

Ym;n (f )p;! � c
 [r ]+1

�
f;

1
m

;
1
n

�

p;!
� C
 r

�
f;

1
m

;
1
n

�

p;!
, m; n 2 N.

�

Proof of Corollary 3.3 . Let r 2 R+ and p 2 (1; 1 ). Suppose that ! 2 Ap (T), T 2 Un
and 0 < h < �= (n + 1) . From one dimensional inequality [1,2]

k[I � � h ]r TkL p
!

. (n + 1) � 2r


 T (2r )





L p
!

;

we obtain
Z

T

j[I � � h ]r T (x)jp ! (x) dx . (n + 1) � 2rp
Z

T

�
�
�T (2r ) (x)

�
�
�
p

! (x) dx: (4.2)

From (4.2), we have for almost everyy
Z

T

j[I � � h;� ]r T1 (x; y)jp ! (x; y) dx . (m + 1) � 2rp
Z

T

�
�
�T (2r; � )

1 (x; y)
�
�
�
p

! (x; y) dx:

Then
Z

T2

j[I � � h;� ]r T1 (x; y)jp ! (x; y) dxdy . (m + 1) � 2rp
Z

T2

�
�
�T (2r; � )

1 (x; y)
�
�
�
p

! (x; y) dxdy;


 r (T1; �= (m + 1) ; �)p;! . (m + 1) � 2r


 T (2r; � )

1





p;!

holds. Other inequalities can be proved by the same method. �
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Proof of Theorem 1.4 . For �; � > 0, there exist natural numbers m; n so that m
� �

1=� < 2m
� , n

� � 1=� < 2n
� . Setting

� m;n (f ) := Sm; � (f ) � S� ;n (f ) + Sm;n (f ) ;

from Theorem 1.2 one can get

A1 = kf � Sm; � (f ) � S� ;n (f ) + Sm;n (f )kp;!

. Ym;n (f )p;! . 
 r

�
f; m � 1; n� 1

�

p;!
. 
 r

�
f; �m � 1; �n � 1

�

p;!
:

Secondly, we setA2 =


 S(2r; � )

m; � (f � S� ;n (f ))




p;!
and  = f � S� ;n (f ). By one dimensional

inequality (see Lemma2.10)

� 2r

0

@
Z

T

�
�
�T (2r )

m (x)
�
�
�
p

! (x) dx

1

A

1=p

.

0

@
Z

T

�
�
�
h
Tm (x) � � 1

m
Tm (x)

i r �
�
�
p

! (x) dx

1

A

1=p

we get, for almost everyy;

� 2r

0

@
Z

T

�
�
�S(2r; � )

m; � ( )
�
�
�
p

! (x; y) dx

1

A

1=p

.

0

@
Z

T

�
�
�
�5

r; �
1
m ;�

Sm; � ( )
�
�
�
�

p

! (x; y) dx

1

A

1=p

, and

� 2rp
Z

T

�
�
�S(2r; � )

m; � ( )
�
�
�
p

! (x; y) dx .
Z

T

�
�
�
�5

r; �
1
m ;�

Sm; � ( )
�
�
�
�

p

! (x; y) dx:

Then

� 2rp
Z

T2

�
�
�S(2r; � )

m; � ( )
�
�
�
p

! (x; y) dxdy .
Z

T2

�
�
�
�5

r; �
1
m ;�

Sm; � ( )
�
�
�
�

p

! (x; y) dxdy, and

� 2r A2 .



 5 r; �

1
m ;�

Sm; � ( )





p;!
=




 Sm; �

�
5 r; �

1
m ;�


� 





p;!

.



 5 r; �

1
m ;�







p;!
=




 5 r; �

1
m ;�

(f � S� ;n (f ))





p;!
=




 5 r; �

1
m ;�

f � 5 r; �
1
m ;�

S� ;n (f )





p;!

=



 5 r; �

1
m ;�

f � S0;�

�
5 r; �

1
m ;�

f
�

� S� ;n

�
5 r; �

1
m ;�

f
�

+ S0;n

�
5 r; �

1
m ;�

f
� 





p;!

. Y0;n

�
5 r; �

1
m ;�

f
�

p;!
. 
 r

�
5 r; �

1
m ;�

f; 1;
1
n

�

p;!

= sup
0� h� 1

0� k� 1=n




 5 r; �

h;� 5 � ;r
� ;k

�
5 r; �

1
m ;�

f
� 





p;!
. sup

0� k� 1=n




 5 � ;r

� ;k

�
5 r; �

1
m ;�

f
� 





p;!

. sup
0� h� 1=m
0� k� 1=n



 5 r; �

h;�

�
5 � ;r

� ;k f
� 




p;!
= 
 r

�
f;

1
m

;
1
n

�

p;!
. 
 r

�
f;

�
m

;
�
n

�

p;!
:

Taking
A3 :=



 S(� ;2r )

� ;n (f � Sm; � (f ))




p;!
and A4 :=



 S(2r; 2r )

m;n (f )




p;!
;

similar arguments give us

� 2r A3 .


 S(� ;2r )

� ;n (f � Sm; � (f ))




p;!
. 
 r

�
f; �m � 1; �n � 1

�

p;!
;

� 2r � 2r A4 .


 S(2r; 2r )

m;n (f )




p;!
. 
 r

�
f; �m � 1; �n � 1

�

p;!
, and

A1 + � 2r A2 + � 2r A3 + � 2r � 2r A4 . 
 r (f; �; � )p;! :



1608 R. Akgün

De�nition of K -functional gives

K (f; �; �; p; !; 2r ) � A1 + � 2r A2 + � 2r A3 + � 2r � 2r A4 . 
 r (f; �; � )p;! :

Consider reverse of the last inequality. For anyg1 2 W r; �
p;! , g2 2 W � ;s

p;! , g 2 W r;s
p;! we have


 r (f; �; � )p;! � 
 r (f � g1 � g2 � g; �; � )p;! + 
 r (g1; �; � )p;! +

+
 r (g2; �; � )p;! + 
 r (g; �; � )p;! . kf � g1 � g2 � gkp;! +

+ � 2r


 g(2r; � )

1





p;!
+ � 2r



 g(� ;2r )

2





p;!
+ � 2r � 2r



 g(2r; 2r )





p;!
:

From the last inequality, taking in�mum on g1 2 W r; �
p;! , g2 2 W � ;s

p;! , g 2 W r;s
p;! , one gets


 r (f; �; � )p;! . K (f; �; �; p; !; 2r ):

�

Proof of Theorem 1.6 . Using the properties of 
 r (f; �; �)p;! we have


 r

�
f;

1
m

;
1
n

�

p;!
� 
 r

�
f � W2� ;2� f;

1
m

;
1
n

�

p;!
+ 
 r

�
W2� ;2� f;

1
m

;
1
n

�

p;!
, and


 r

�
f � W2� ;2� f;

1
m

;
1
n

�

p;!
. kf � W2� ;2� kp;! . Y2� ;2� (f )p;! .

By the property

W2� ;2� f � W0;0f �
�X

i =0

�
W2i ;2� f � Wb2i � 1c;2� f

�
+

�X

j =0

�
W2� ;2j f � W2� ;b2j � 1cf

�
�

�
�X

i =0

�X

j =0

W2i ;2j f � W2i ;b2j � 1cf � Wb2i � 1c;2j f + Wb2i � 1c;b2j � 1cf;

we �nd (see Lemma 2.12 for quantities  i;� (f ), h�;j (f ), ' i;j (f ) )


 r

�
W2� ;2� f;

1
m

;
1
n

�

p;!
= 
 r

�
W2� ;2� f � W0;0f;

1
m

;
1
n

�

p;!

�
�X

i =0


 r

�
 i;� (f ) ;

1
m

;
1
n

�

p;!
+

�X

j =0


 r

�
h�;j (f ) ;

1
m

;
1
n

�

p;!
+

+
�X

i =0

�X

j =0


 r

�
' i;j (f ) ;

1
m

;
1
n

�

p;!

.
1

m2r

�X

i =0



 ( i;� (f )) (2r; � )





p;!
+

1
n2r

�X

j =0



 (h�;j (f )) (� ;2r )





p;!
+

+
1

m2r

1
n2r

�X

i =0

�X

j =0



 (' i;j (f )) (2r; 2r )





p;!
.

.
1

m2r

�X

i =0

22ri Yb2i � 1c;2j (f )p;! +
1

n2r

�X

j =0

22rj Y2i ;b2j � 1c (f )p;! +

+
1

m2r

1
n2r

�X

i =0

�X

j =0

22ir +2 rj Yb2i � 1c;b2j � 1c (f )p;! :

Suppose thatm; n satisfy 2� � m < 2� +1 ; 2� � n < 2� +1 . Then, one can get


 r

�
f;

1
m

;
1
n

�

p;!
.

1
m2r

1
n2r

�X

i =0

�X

j =0

22ri +2 rj Yb2i � 1c;b2j � 1c (f )p;!
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.
1

m2r n2r

� +1X

i =0

� +1X

j =0

22ri +2 rj Yb2i � 1c;b2j � 1c (f )p;!

.
1

m2r n2r

mX

i =0

nX

j =0

[(i + 1) ( j + 1)] 2r � 1 Yi;j (f )p;! :

�
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1. Introduction and motivation

As a classical analytic instrument, the Abel lemma on summation by parts has been
fundamental in convergence test of in�nite series (cf. [3, Ÿ80], [19, Ÿ43] and [22, Ÿ7.36] for
example). However, it has not been utilized, until recently, to evaluate �nite sums and
in�nite series. For this purpose, it has been necessary for the author [6,9] to reformulate
it in a more symmetrical form.

For an arbitrary complex sequencef � kg, de�ne the backward and forward di�erence
operators r and �� , respectively, by

r � k = � k � � k� 1 and �� � k = � k � � k+1 ; (1.1)

where �� is adopted for convenience in the present paper, which di�ers from the usual
operator � only in the minus sign. Then Abel's lemma on summation by parts for
unilateral and bilateral series may be reformulated respectively as

+ 1X

k=0

Bk r Ak=[ AB ]+ � A � 1B0 +
+ 1X

k=0

Ak �� Bk ; (1.2)

+ 1X

k= �1

Bk r Ak=[ AB ]+ � [AB ]� +
+ 1X

k= �1

Ak �� Bk : (1.3)

Both formulae just displayed hold for terminating series and nonterminating series, pro-
vided, in the latter case, that one of both series in each equation converges and there exist
the limits [AB ]� := lim

n!�1
AnBn+1 .

The above modi�ed Abel formulae on summation by parts have been shown powerful in
dealing with summation and transformation formulae for both unilateral series (cf.[7,12,13,
23,24]) and bilateral series (cf. [8,10,11]). The aim of the present paper is to examine two

Email address: chu.wenchang@unisalento.it
Received: 02.04.2019; Accepted: 02.12.2019
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classes of well�poised series6H6(� 1) and 7H7(1), as well as their unilateral counterparts.
Several transformation formulae will be derived and some important identities will be
reviewed.

Let Z and N be the sets of integers and natural numbers withN0 = N [ f 0g. Then for
n 2 Z and an indeterminate x, the shifted factorial is de�ned by the quotient

(x)n = �( x + n)=�( x);

where the � -function is given by the Euler integral

�( x) =
Z 1

0
ux� 1e� udu with < (x) > 0:

Throughout the paper, we shall adopt the following notations (cf. Bailey [1]) for the
generalized hypergeometric series, which has wide applications in mathematics, physics,
and computer science (see [20] and [17, Ÿ5.5]):

pFq

�
a1;a2;� � � ;ap
b1;b2;� � � ;bq

�
�
�z

�
=

1X

k=0

(a1)k (a2)k � � � (ap)k

(b1)k (b2)k � � � (bq)k

zk

k!
;

pHp

�
a1;a2;� � � ;ap
b1;b2;� � � ;bp

�
�
�z

�
=

1X

k= �1

(a1)k (a2)k � � � (ap)k

(b1)k (b2)k � � � (bp)k
zk ;

pH +
p

�
a1;a2;� � � ;ap
b1;b2;� � � ;bp

�
�
�z

�
=

1X

k=0

(a1)k (a2)k � � � (ap)k

(b1)k (b2)k � � � (bp)k
zk :

There exist numerous closed formulae for hypergeometric series in the literature (see e.g.
[4,5,7,14,24]). These series are said to be well�poised (whenq = p � 1 for the unilateral
seriespFq) if their numerator parameters can be paired o� with denominator parameters
so that each pair has the same sum. The well�poised series is one of the important classes
of hypergeometric series. They have been carefully examined by Whipple [25] almost a
century ago. Some extensions with integer parameters can be found in a recent paper [21]
by Srivastava et al.

There are several useful properties of the� -function. Some of them are recorded below,
that will be utilized freely in the paper without explanation:

� Recurrence relation

�( x + n) = ( x)n �( x) for n 2 N0:

� Asymptotic relation (cf. Rainville [ 20, Ÿ11])

�( x + n) � (n � 1)! nx as n ! + 1 : (1.4)

Using the above relation is sometimes easier than using the Stirling asymptotic
formula.

� Euler's re�ection formula (cf. Rainville [ 20, Ÿ17])

�( x)�(1 � x) =
�

sin �x
:

� Gauss' multiplication formula (cf. Rainville [ 20, Ÿ20])

�( nx) = (2 � )
1� n

2 nnx � 1
2

n� 1Y

k=0

�
�
x +

k
n

�
: (1.5)
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In addition, we shall make use of the following multi�parameter notations in order to
reduce lengthy and complicated expressions:

�
�; �; � � � ; 
A;B; � � � ;C

�

n
=

(� )n (� )n � � � ( )n

(A)n (B )n � � � (C)n
;

�
�

�; �; � � � ; 
A;B; � � � ;C

�
=

�( � )�( � ) � � � �(  )
�( A)�( B ) � � � �( C)

;

sin �
�

�; �; � � � ; 
A;B; � � � ;C

�
=

sin(�� ) sin(�� ) � � � sin(� )
sin(�A ) sin(�B ) � � � sin(�C )

:

2. Well�poised 7H7(1) series

For the two sequences de�ned by

Ak =
�

1 + b; 1 + c; 1 + d; 1 + 2a � b� c � d
1 + a � b; 1 + a � c; 1 + a � d; 1 � a + b+ c + d

�

k
;

Bk =
�

�; �; ; 2 + 2a � � � � � 
1 + a � �; 1 + a � �; 1 + a � ; � + � +  � a � 1

�

k
;

it is almost trivial to factorize their di�erences

r Ak =
�

b; c; d; 2a � b� c � d
1 + a � b; 1 + a � c; 1 + a � d; 1 � a + b+ c + d

�

k

�
(a + 2k)(a � b� c)(a � b� d)(a � c � d)

bcd(2a � b� c � d)
;

�� Bk =
�

�; �; ; 2 + 2a � � � � � 
2 + a � �; 2 + a � �; 2 + a � ; � + � +  � a

�

k

�
(1 + a + 2k)(1 + a � � � � )(1 + a � � �  )(1 + a � � �  )

(1 + a � � )(1 + a � � )(1 + a �  )(1 + a � � � � �  )
;

and determine the boundary condition

A � 1B0 =
(a � b)(a � c)(a � d)(b+ c + d � a)

bcd(2a � b� c � d)
:

When 1+3a = b+ c+ d+ � + � +  , we can also evaluate, by making use of the asymptotic
relation (1.4), the following limits

[AB ]+ = lim
k!1

AkBk+1 = lim
k!1

�
1 + b; 1 + c; 1 + d; 1 + 2a � b� c � d

1 + a � b; 1 + a � c; 1 + a � d; 1 � a + b+ c + d

�

k

�
�

�; �; ; 2 + 2a � � � � � 
1 + a � �; 1 + a � �; 1 + a � ; � + � +  � a � 1

�

k+1

= �
�

1 + a � b; 1 + a � c; 1 + a � d; 1 � a + b+ c + d
1 + b; 1 + c; 1 + d; 1 + 2a � b� c � d

�

� �
�

1 + a � �; 1 + a � �; 1 + a � ; � + � +  � a � 1
�; �; ; 2 + 2a � � � � � 

�

=
�(1+ a� b)�(1+ a� c)�(1+ a� d)

2a � b� c � d
�

�
1 + a � �; 1 + a � �; 1 + a � 

1 + b;1 + c;1 + d; �; �; 

�
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and

[AB ]� = lim
k!�1

�
1 + b; 1 + c; 1 + d; 1 + 2a � b� c � d

1 + a � b; 1 + a � c; 1 + a � d; 1 � a + b+ c + d

�

k

�
�

�; �; ; 2 + 2a � � � � � 
1 + a � �; 1 + a � �; 1 + a � ; � + � +  � a � 1

�

k+1

= lim
k!�1

�
b� a; c � a; d � a; a � b� c � d
� b; � c; � d; b+ c + d � 2a

�

� k

�
�

� � a; � � a;  � a; 2 + a � � � � � 
1 � �; 1 � �; 1 � ; � + � +  � 1 � 2a

�

� k� 1

= �
�

� b; � c; � d; b+ c + d � 2a
b� a; c � a; d � a; a � b� c � d

�

� �
�

1 � �; 1 � �; 1 � ; � + � +  � 1 � 2a
� � a; � � a;  � a; 2 + a � � � � � 

�

=
1

b+ c + d � 2a
�

�
� b;� c; � d;1 � �; 1 � �; 1 � 

b� a; c � a; d � a; � � a; � � a;  � a

�
:

They will be employed, in this section, to investigate two well�poised series: �rst the
unilateral series 7H +

7 (1) and then the bilateral one 7H7(1).

2.1. Unilateral series

For the seven complex parametersf a; b; c; d; �; �;  g satisfying the linear condition
1 + 3a = b+ c + d + � + � +  , de�ne the well�poised series by

W (a; b; c; d; �; �;  )

:= 7H +
7

�
1 + a

2 ; b; c; d; �; �; 
a
2 ;1 + a � b;1 + a � c;1 + a � d;1 + a � �; 1 + a � �; 1 + a � 

�
�
�1

�

which is absolutely convergent because the sum of the parameters in denominator exceeds
that in numerator by �3�.

According to the modi�ed Abel lemma on summation by parts, we can express the
W -series as follows:

W (a; b; c; d; �; �;  ) =
bcd(2a � b� c � d)

a(a � b� c)(a � b� d)(a � c � d)

1X

k=0

Bk r Ak

=
bcd(2a � b� c � d)

a(a � b� c)(a � b� d)(a � c � d)

n
[AB ]+ � A � 1B0 +

1X

k=0

Ak �� Bk

o
:

Observing that

1X

k=0

Ak �� Bk = W (a + 1; b+ 1 ; c + 1 ; d + 1 ; �; �;  )

�
(1 + a)(1 + a � � � � )(1 + a � � �  )(1 + a � � �  )
(1 + a � � )(1 + a � � )(1 + a �  )(1 + a � � � � �  )
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we derive the following recurrence relation

W (a; b; c; d; �; �;  ) = W (a + 1; b+ 1 ; c + 1 ; d + 1 ; �; �;  )

�
(1 + a)bcd(1 + a � � � � )(1 + a � � �  )(1 + a � � �  )

a(b+ c � a)(b+ d � a)(c + d � a)(1 + a � � )(1 + a � � )(1 + a �  )

+
(a � b)(a � c)(a � d)(b+ c + d � a)
a(b+ c � a)(b+ d � a)(c + d � a)

+
bcd

a(a � b� c)(a � b� d)(a � c � d)

� �
�

1 + a � b;1 + a � c;1 + a � d;1 + a � �; 1 + a � �; 1 + a � 
1 + b;1 + c;1 + d; �; �; 

�
:

Keep in mind that this recursion does not alter the convergence condition because the
linear restriction 1 + 3a = b+ c + d + � + � +  remains invariant. Iterating this relation
m-times, we get the transformation formula below that expresses theW -series in terms of
another well�poised sum.

Proposition 2.1 (m 2 N0: 1 + 3a = b+ c + d + � + � +  ).

W (a; b; c; d; �; �;  ) = W (a + m; b+ m; c + m; d + m; �; �;  )

�
�

1 + a; b; c; d;1 + a � � � �; 1 + a � � � ; 1 + a � � � 
a; b+ c � a; b+ d � a; c+ d � a; 1 + a � �; 1 + a � �; 1 + a � 

�

m

+
(a � b)(a � c)(a � d)(b+ c + d � a)
a(b+ c � a)(b+ d � a)(c + d � a)

m� 1X

k=0

b+ c + d � a + 2k
b+ c + d � a

�
�

b; c; d;1 + a � � � �; 1 + a � � � ; 1 + a � � � 
1+ b+ c� a;1+ b+ d� a; 1+ c+ d� a; 1+ a� �; 1+ a� �; 1+ a� 

�

k

+
(a � b)(a � c)(a � d)

a(b+ c � a)(b+ d � a)(c + d � a)

� �
�

a � b; a� c; a � d;1 + a � �; 1 + a � �; 1 + a � 
b; c; d; �; �; 

�

�
m� 1X

k=0

�
1 + a � � � �; 1 + a � � � ; 1 + a � � � 
1 + b+ c � a; 1 + b+ d � a; 1 + c + d � a

�

k
:

By means of the WeierstrassM -test on uniformly convergent series (cf. Stromberg [22,
Ÿ3.106]), it is not di�cult to determine the following limit:

lim
m!1

W (a + m; b+ m; c + m; d + m; �; �;  ) = 3H +
3

�
�; �; 

1 + a � b;1 + a � c;1 + a � d

�
�
�1

�
:

Therefore, we have established the reciprocal relation involving two nonterminating well�
poised series and two partial3H +

3 -series.
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Theorem 2.2 (1 + 3a = b+ c + d + � + � +  ).

W (a; b; c; d; �; �;  ) � a(b+ c � a)(b+ d � a)(c + d � a)

= W (b+ c + d � a; b; c; d;1 + a � � � �; 1 + a � � � ; 1 + a � � �  )

� (a � b)(a � c)(a � d)(b+ c + d � a)

+ 3H +
3

�
1 + a � � � �; 1 + a � � � ; 1 + a � � � 
1 + b+ c � a; 1 + b+ d � a; 1 + c + d � a

�
�
�1

�

� �
�

1 + a � b;1 + a � c;1 + a � d;1 + a � �; 1 + a � �; 1 + a � 
b; c; d; �; �; 

�

+ 3H +
3

�
�; �; 

1 + a � b;1 + a � c;1 + a � d

�
�
�1

�

� �
�

1+ b+ c� a; 1+ b+ d� a; 1+ c+ d� a; 1+ a� �; 1+ a� �; 1+ a� 
b; c; d;1 + a � � � �; 1 + a � � � ; 1 + a � � � 

�
:

This theorem has the following three remarkable implications.
� For c ! a, we derive an expression for the nonterminating7F6-series

7F6

�
a; 1 + a

2 ; b; d; �; �; 
a
2 ; 1 + a � b;1 + a � d;1 + a � �; 1 + a � �; 1 + a � 

�
�
�1

�

=
1

b+ d � a4F3

�
1; 1 + a � � � �; 1 + a � � � ; 1 + a � � � 

1 + b;1 + b+ d � a; 1 + d

�
�
�1

�

� �
�

1 + a � b;1 + a � d;1 + a � �; 1 + a � �; 1 + a � 
1 + a; 1 + b;1 + d; �; �; 

�

+
1

b+ d � a3F2

�
�; �; 

1 + a � b;1 + a � d

�
�
�1

�

� �
�

1 + b+ d � a; 1 + a � �; 1 + a � �; 1 + a � 
1 + a; 1 + a � � � �; 1 + a � � � ; 1 + a � � � 

�
;

where the parameters satisfy the condition1 + 2a = b+ d + � + � +  .
� Letting further � ! � n with n 2 N0 in the above transformation, the �rst term

on the right is annihilated, while the second one can be evaluated by the Pfa��
Saalschütz theorem (cf. Bailey [1, Ÿ2.2])

3F2

�
� n; �; 

1 + a � b;1 + a � d

�
�
�1

�
=

�
1 + a � b� ; 1 + a � d � 

1 + a � b;1 + a � d

�

n
:

Consequently, we recover the identity discovered by Dougall [16, :]

7F6

�
a; 1 + a

2 ; b; d; �; ; � n
a
2 ;1 + a � b;1 + a � d;1 + a � �; 1 + a � ; 1 + a + n

�
�
�1

�

=
�

1 + a; 1 + a � b� d;1 + a � b� ; 1 + a � d � 
1 + a � b;1 + a � d;1 + a � ; 1 + a � b� d � 

�

n
;

where the series is2-balanced because1 + 2a + n = b+ d + � +  .
� When the series terminates above byc ! � m with m 2 N0, we get the following

reciprocal formula (1 + 3a + m = b+ d + � + � +  ):

W (a; b; d;� m; �; �;  ) =
(a � b)(a + m)(a � d)(b+ d � a � m)
a(b� a � m)(b+ d � a)(d � a � m)

� W (b+ d � a � m; b; d;� m; 1 + a � � � �; 1 + a � � � ; 1 + a � � �  ):

Dougall's formula just displayed for terminating 7F6-series can also be obtained
by letting d ! a in the above transformation, because in this case, there remains
the only surviving end term for the W -sum on the right.
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2.2. Bilateral series

Under the same parameter restriction 1 + 3a = b + c + d + � + � +  , de�ne the
corresponding bilateral series

W(a; b; c; d; �; �;  )

:= 7H7

�
1 + a

2 ; b; c; d; �; �; 
a
2 ;1 + a � b;1 + a � c;1 + a � d;1 + a � �; 1 + a � �; 1 + a � 

�
�
�1

�
:

In the view of the modi�ed Abel lemma on summation by parts, this W-series can be
manipulated as follows:

W(a; b; c; d; �; �;  ) =
bcd(2a � b� c � d)

a(a � b� c)(a � b� d)(a � c � d)

1X

k= �1

Bk r Ak

=
bcd(2a � b� c � d)

a(a � b� c)(a � b� d)(a � c � d)

�
[AB ]+ � [AB ]� +

1X

k= �1

Ak �� Bk

�
:

Analogously, taking into account
1X

k= �1

Ak �� Bk = W(a + 1; b+ 1 ; c + 1 ; d + 1 ; �; �;  )

�
(1 + a)(1 + a � � � � )(1 + a � � �  )(1 + a � � �  )
(1 + a � � )(1 + a � � )(1 + a �  )(1 + a � � � � �  )

and the di�erence

[AB ]+ � [AB ]� =
�( a; b; c; d; �; �;  )
bcd(b+ c + d � 2a)

;

where � -function is given by the di�erence of two � -function quotients

�( a; b; c; d; �; �;  ) = �
�

1 � b;1 � c;1 � d;1 � �; 1 � �; 1 � 
b� a; c � a; d � a; � � a; � � a;  � a

�

�
�

1 � sin �
�

b; c; d; �; �; 
a � b; a� c; a � d; a � �; a � �; a � 

� �

we derive the following recurrence relation

W(a; b; c; d; �; �;  ) = W(a + 1; b+ 1 ; c + 1 ; d + 1 ; �; �;  )

�
(1 + a)bcd(1 + a � � � � )(1 + a � � �  )(1 + a � � �  )

a(b+ c � a)(b+ d � a)(c + d � a)(1 + a � � )(1 + a � � )(1 + a �  )

+
�( a; b; c; d; �; �;  )

a(b+ c � a)(b+ d � a)(c + d � a)
:

Iterating this relation m-times, we deduce the transformation formula.

Lemma 2.3 (m 2 N0: 1 + 3a = b+ c + d + � + � +  ).

W(a; b; c; d; �; �;  ) = W(a + m; b+ m; c + m; d + m; �; �;  )

�
�

1 + a; b; c; d;1 + a � � � �; 1 + a � � � ; 1 + a � � � 
a; b+ c � a; b+ d � a; c+ d � a; 1 + a � �; 1 + a � �; 1 + a � 

�

m

+
�( a; b; c; d; �; �;  )

a(b+ c� a)( b+ d� a)( c+ d� a)

m� 1X

k=0

�
1 + a � � � �; 1 + a � � � ; 1 + a � � � 
1 + b+ c � a; 1 + b+ d � a; 1 + c + d � a

�

k
:

For this transformation formula, we examine now its limiting case as � ! �1 . In
order to avoid confusion, perform the replacement� ! � � n with n 2 N. Under the
substitution c = 1+3 a� b� d� � � � �  + n and the condition 1+ < (2a� b� d� � �  ) > 0,
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we have to make, asn ! 1 , term by term estimations. For the two W-series, it is routine
to have

W(a; b; c; d; �; �;  ) =) 5H5

�
1 + a

2 ; b; d; �; 
a
2 ;1 + a � b;1 + a � d;1 + a � �; 1 + a � 

�
�
�1

�
;

W(a + m; b+ m; c + m; d + m; �; �;  )

=) 5H5

"
1 + a+ m

2 ; b+ m; d + m; �; 
a+ m

2 ;1 + a � b;1 + a � d;1 + a � � + m;1 + a �  + m

�
�
�1

#

;

where both series have the same convergent condition1 + < (2a � b� d � � �  ) > 0. By
making use of (1.4), we can reduce the quotient of shifted factorials to

�
1 + a; b; c; d;1 + a � � � �; 1 + a � � � ; 1 + a � � � 

a; b+ c � a; b+ d � a; c+ d � a;1 + a � �; 1 + a � �; 1 + a � 

�

m

=)
�

1 + a; b; d;1 + a � � � 
a; b+ d � a; 1 + a � �; 1 + a � 

�

m
:

Because the sum over0 � k < m is bounded, the ultimate term will vanish:

�( a; b; c; d; �; �;  )
a(b+ c� a)( b+ d� a)( c+ d� a)

m� 1X

k=0

�
1 + a � � � �; 1 + a � � � ; 1 + a � � � 
1 + b+ c � a; 1 + b+ d � a; 1 + c + d � a

�

k

=) O
� 1

n2

�
� �

�
1 � � + n; b + d + � + � +  � 3a � n

� � a � n; 1 + 2a � b� d � � � � �  + n

�

� O
�
n� 2< (1+2 a� b� d� � �  ) � = o(1) for 1 + < (2a � b� d � � �  ) > 0:

Therefore, we have derived the following transformation formula.

Proposition 2.4 (m 2 N0: 1 + < (2a � b� d � � �  ) > 0).

5H5

"
1 + a

2 ; b; d; �; 
a
2 ;1 + a � b;1 + a � d;1 + a � �; 1 + a � 

�
�
�1

#

= 5H5

"
1 + a+ m

2 ; b+ m; d + m; �; 
a+ m

2 ;1 + a � b;1 + a � d;1 + a � � + m;1 + a �  + m

�
�
�1

#

�
�

1 + a; b; d;1 + a � � � 
a; b+ d � a;1 + a � �; 1 + a � 

�

m
:

This transformation implies the following important formula for the well�poised 5H5-
series discovered by Dougall [16, :]

5H5

�
1 + a

2 ; b; c; d; e
a
2 ; 1 + a � b; 1 + a � c; 1 + a � d; 1 + a � e

�
�
� 1

�

= �
�

1+ a� b; 1+ a� c; 1+ a� d; 1+ a� e; 1� b; 1� c; 1� d; 1� e; 1+2 a� b� c� d� e

1+ a;1� a;1+ a� b� c;1+ a� b� d;1+ a� b� e;1+ a� c� d;1+ a� c� e;1+ a� d� e

�
:

In fact, by letting m ! 1 in Proposition 2.4, we have the limiting form

5H5

�
1 + a

2 ; b; d; �; 
a
2 ;1 + a � b;1 + a � d;1 + a � �; 1 + a � 

�
�
�1

�

= �
�

a; b+ d � a; 1 + a � �; 1 + a � 
1 + a; b; d;1 + a � � � 

� �

2H2

�
�; 

1 + a � b;1 + a � d

�
�
�1

�

� �
�

b; d; 1 � �; 1 � 
b� a; d � a; 1 + a � �; 1 + a � 

�

2H2

�
b; d

1 + a � �; 1 + a � 

�
�
�1

� �
:
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Evaluating the both 2H2-series by another formula of Dougall [16]

2H2

�
a;b
c;d

�
�
�1

�
= �

�
1 � a; 1 � b; c; d; c+ d � a � b� 1

c � a; d � a; c � b; d� b

�
;

where < (c + d � a � b) > 1, and then simplifying the result, we recon�rm the identity for
5H5-series. �

Furthermore, by following exactly the same procedure for the bilateral well�poised5H5-
series as that shown by the author [10, Ÿ3], we can evaluate the limit

lim
m!1

W(a + m; b+ m; c + m; d + m; �; �;  )

= 3H3

�
�; �; 

1 + a � b;1 + a � c;1 + a � d

�
�
�1

�

� 3H3

�
b; c; d

1 + a � �; 1 + a � �; 1 + a � 

�
�
�1

�

� �
�

b; c; d;1 � �; 1 � �; 1 � 
b� a; c � a; d � a; 1 + a � �; 1 + a � �; 1 + a � 

�
:

This leads us to the transformation

aW(a; b; c; d; �; �;  ) = 3H3

�
�; �; 

1 + a � b;1 + a � c;1 + a � d

�
�
�1

�

� �
�

b+ c � a; b+ d � a; c+ d � a; 1 + a � �; 1 + a � �; 1 + a � 
b; c; d;1 + a � � � �; 1 + a � � � ; 1 + a � � � 

�

� 3H3

�
b; c; d

1 + a � �; 1 + a � �; 1 + a � 

�
�
�1

�

� �
�

b+ c � a; b+ d � a; c+ d � a; 1 � �; 1 � �; 1 � 
b� a; c � a; d � a; 1 + a � � � �; 1 + a � � � ; 1 + a � � � 

�

+
�( a; b; c; d; �; �;  )

(b+ c� a)( b+ d� a)( c+ d� a)
3H +

3

�
1+ a� � � �; 1+ a� � � ; 1+ a� � � 
1+ b+ c� a; 1+ b+ d� a; 1+ c+ d� a

�
�
�1

�
:

By making the replacement k ! � k, we have the reciprocal relation

�
X

k< 0

(1 + a � � � � )k (1 + a � � �  )k (1 + a � � �  )k

(b+ c � a)k+1 (b+ d � a)k+1 (c + d � a)k+1

=
X

k� 0

(1 + a � b� c)k (1 + a � b� d)k (1 + a � c � d)k

(� + � � a)k+1 (� +  � a)k+1 (� +  � a)k+1
:

Therefore, the di�erence between the penultimate equation and its reformulated one under
the parameter exchangesf b 
 �; c 
 �; d 
  g results, after some simpli�cations, the
three term relation among the three bilateral series with the parameter excess �2�.

Corollary 2.5 (1 + 3a = b+ c + d + � + � +  ).

�( a; b; c; d; �; �;  ) � 3H3

�
1 + a � � � �; 1 + a � � � ; 1 + a � � � 
1 + b+ c � a; 1 + b+ d � a; 1 + c + d � a

�
�
�1

�

= 3H3

�
�; �; 

1 + a � b;1 + a � c;1 + a � d

�
�
�1

�

� �( b+ c + d � a;b; c; d;1 + a � � � �; 1 + a � � � ; 1 + a � � �  )

� 3H3

�
b; c; d

1 + a � �; 1 + a � �; 1 + a � 

�
�
�1

�

� �(1+ a� � � � �  ; b� a; c� a; d� a; 1+ a� � � �; 1+ a� � � ; 1+ a� � �  ):
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3. Well�poised 6H6(� 1) series

For the two sequencesf Ak ; Bkg de�ned by

Ak :=
�

1 + b; 1 + c; 1 + 3a � b� 4c
1 + a � b;1 + a � c;1 � 2a + b+ 4c

�

k
(� 1)k ;

Bk :=
�

d; 2a � b� 2c; 1 + 2a � 2c � d;1 � 2a + b+ 4c
1 + a � d;1 � a + b+ 2c; 2c + d � a; 3a � b� 4c

�

k
;

it is routine to compute their di�erences

r Ak =
�

b; c; 3a � b� 4c
1 + a � b;1 + a � c;1 � 2a + b+ 4c

�

k
(� 1)k

�
(a + 2k)(2a � b� 2c + k)(b+ 2c � a + k)

bc(3a � b� 4c)
;

�� Bk =
�

d; 2a � b� 2c; 1 + 2a � 2c � d;1 � 2a + b+ 4c
2 + a � d;2 � a + b+ 2c; 1 + 2c + d � a; 1 + 3a � b� 4c

�

k

�
(1 + a + 2k)(a � 2c)(1 � a + b+ 2c � d)(3a � b� 4c � d)

(1 + a � d)(1 � a + b+ 2c)(a � 2c � d)(3a � b� 4c)
;

and determine the boundary value

A � 1B0 =
(a � b)(a � c)(2a � b� 4c)

bc(3a � b� 4c)
:

Under the condition < (a � 2c) < 0, we can also show, by making use of (1.4), the two
limiting relations

[AB ]+ = lim
n!1

AnBn+1 = lim
n!1

O
�
n3< (a� 2c) � = 0 ;

[AB ]� = lim
n!�1

AnBn+1 = lim
n!1

O
�
n3< (a� 2c) � = 0 :

They will be utilized in this section to establish summation and transformation formulae
for the alternating well�poised series 6H +

6 (� 1) and 6H6(� 1).

3.1. Unilateral series

For the four complex parameters f a; b; c; dg subject to the condition < (a � 2c) < 0,
de�ne the well�poised series by


( a; b; c; d) := 6H +
6

�
1 + a

2 ; b; c; d; 1 + 2a � b� 2c;1 + 2a � 2c � d
a
2 ; 1 + a � b;1 + a � c;1 + a � d; b� a + 2c; d � a + 2c

�
�
� � 1

�
:

By applying the modi�ed Abel lemma on summation by parts, we can reformulate the

 -series as follows:


( a; b; c; d) =
bc(3a � b� 4c)

a(2a � b� 2c)(b+ 2c � a)

1X

k=0

Bk r Ak

=
bc(3a � b� 4c)

a(2a � b� 2c)(b+ 2c � a)

�
[AB ]+ � A � 1B0 +

1X

k=0

Ak �� Bk

�
:

Taking into account that
1X

k=0

Ak �� Bk =
(1 + a; 1 + b;1 + c; d)

�
(1 + a)(a � 2c)(1 � a + b+ 2c � d)(3a � b� 4c � d)
(1 + a � d)(1 � a + b+ 2c)(a � 2c � d)(3a � b� 4c)
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we derive the recurrence relation


( a; b; c; d) =
(a � b)(a � c)(2a � b� 4c)
a(2a � b� 2c)(a � b� 2c)

+ 
(1 + a; 1 + b;1 + c; d)

�
(1 + a)bc(2c � a)(1 + b+ 2c � a � d)(b+ 4c � 3a + d)

a(1 + a � d)(b+ 2c � a)(1 � a + b+ 2c)(b+ 2c � 2a)(d + 2c � a)
:

Iterating this relation m-times yields further the transformation formula.

Lemma 3.1 (m 2 N0: < (a � 2c) < 0).


( a; b; c; d) = 
( a + m; b+ m; c + m; d)

�

"
1 + a; b; c; 2c � a; 1+ b+2 c� a� d

2 ; b+4 c� 3a+ d
2

a; 1 + a � d; b+ 2c � 2a; d + 2c � a; b+2 c� a
2 ; 1+ b+2 c� a

2

#

m

+
(a � b)(a � c)(2a � b� 4c)
a(a � b� 2c)(2a � b� 2c)

m� 1X

k=0

b+ 4c � 2a + 3k
b+ 4c � 2a

�

"
b; c; 2c � a; 1+ b+2 c� a� d

2 ; b+4 c� 3a+ d
2

1 + a � d;1 + b+ 2c � 2a; d + 2c � a; 1+ b+2 c� a
2 ; 2+ b+2 c� a

2

#

k

:

Its limiting relation as m ! 1 result in the expression.

Proposition 3.2 (< (a � 2c) < 0).


( a; b; c; d) = 2H +
2

�
d;1 + 2a � 2c � d

1 + a � b;1 + a � c

�
�
�
1
2

�

� �

"
a; 1 + a � d; b+ 2c � 2a; d + 2c � a; b+2 c� a

2 ; 1+ b+2 c� a
2

1 + a; b; c; 2c � a; 1+ b+2 c� a� d
2 ; b+4 c� 3a+ d

2

#

+
(a � b)(a � c)(2a � b� 4c)
a(a � b� 2c)(2a � b� 2c)

1X

k=0

b+ 4c � 2a + 3k
b+ 4c � 2a

�

"
b; c; 2c � a; 1+ b+2 c� a� d

2 ;b+4 c� 3a+ d
2

2+ b+2 c� a
2 ;1 + b+ 2c � 2a;1+ b+2 c� a

2 ; d + 2c � a; 1 + a � d

#

k

:

The last in�nite series is �almost quadratic� and convergent, because the sum of its
parameters in denominator exceeds that in numerator by �2�.

When b = a and c = a, the 2H +
2 -series on the right can be evaluated respectively by

the two formulae for the 2F1( 1
2)-series due to Gauss and Bailey (cf. Bailey [1, Ÿ2.4])

2F1

�
d;1 + 2a � 2c � d

1 + a � c

�
�
�
1
2

�
= �

"
1
2 ; 1 + a � c

1 + a � c � d
2 ; 1+ d

2

#

;

2F1

�
d;1 � d

1 + a � b

�
�
�
1
2

�
= �

" 1+ a� b
2 ; 2+ a� b

2
1+ a� b+ d

2 ; 2+ a� b� d
2

#

:

We recover hence the next two identities found by Whipple [25, Equations 14.1 and
15.73], where the �rst one can also be found in Bailey [1, Page 97].


( a; b; a; d) = 6F5

�
a; 1 + a

2 ; b; d; 1 � b; 1 � d
a
2 ; 1 + a � b; 1 + a � d; a + b; a+ d

�
�
� � 1

�

= �

"
a + d;1 + a � d; a+ b

2 ; 1+ a+ b
2 ; 1+ a� b

2 ; 2+ a� b
2

1 + a; a; a+ b+ d
2 ; 1+ a+ b� d

2 ; 1+ a� b+ d
2 ; 2+ a� b� d

2

#

;
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( a; a; c; d) = 6F5

�
a; 1 + a

2 ; c; 1 + a � 2c; d; 1 + 2a � 2c � d
a
2 ; 2c; 1 + a � c; 1 + a � d; 2c + d � a

�
�
� � 1

�

= �

" 1
2 ; c + 1

2 ; 1 + a � c;1 + a � d;2c � a + d

1 + a; 1+ d
2 ; 1� d

2 + c;1 + a � c � d
2 ; 2c � a + d

2

#

:

3.2. Bilateral series

Denote further the corresponding bilateral series by

! (a; b; c; d) := 6H6

�
1 + a

2 ; b; c; d; 1 + 2a � b� 2c;1 + 2a � 2c � d
a
2 ; 1 + a � b;1 + a � c;1 + a � d; b� a + 2c; d � a + 2c

�
�
� � 1

�
:

Then by carrying out the same procedure for the bilateral7H7-series, we �nd the following
elegant transformation without remainder terms

! (a; b; c; d) = ! (a + m; b+ m; c + m; d)

�

"
1 + a; b; c; 2c � a; 1+ b+2 c� a� d

2 ; b+4 c� 3a+ d
2

a; 1 + a � d; b+ 2c � 2a; d + 2c � a; b+2 c� a
2 ; 1+ b+2 c� a

2

#

m

:

Its limiting form as m ! 1 reads as

! (a; b; c; d) = lim
m!1

! (a + m; b+ m; c + m; d)

� �

"
a;1 + a � d; b+ 2c � 2a; d + 2c � a; b+2 c� a

2 ; 1+ b+2 c� a
2

1 + a; b; c; 2c � a; 1+ b+2 c� a� d
2 ; b+4 c� 3a+ d

2

#

:

This should lead us to the following summation formula discovered by M. Jackson [18,
1952] (see also Chu et al. [14] by the Cauchy residue method)

! (a; b; c; d) = �

"
1+ a� b� d

2 ; 1� 3a+ b+ d
2 + 2c

1� a+ b� d
2 + c; 1� a� b+ d

2 + c

# �
1 + sin �

�
a � b� c; a � c � d

c; c� a

� �

� �
�
1+ a� b;1+ a� d;1� b;1� d; b� a+2c; d� a+2c; b� 2a+2c; d� 2a+2c

1 + a;1 � a; c; c� a; 2c � a; 1 + a � b� d; b+ d � 3a + 4c

�

who derived it by applying Dixon's summation theorem [15] and its bilateral extension for
well�poised 3F2 and 3H3-series to the transformation due to Bailey [2]

6H6

�
1 + a

2 ; b; c; d; e; f
a
2 ; 1 + a � b;1 + a � c;1 + a � d;1 + a � e;1 + a � f

�
�
� � 1

�

= �
�

1 + a � b;1 + a � c;1 � d;1 � e;1 � f
1 + a; 1 � a; 1 + a � b� c; d � a; e� a; f � a

�

�
�

�
�

1 + 2a � d � e � f; d � a; e� a; f � a
1 + a � d � e;1 + a � d � f; 1 + a � e � f

�

� 3H3

�
b; c;1 + 2a � d � e � f

1 + a � d;1 + a � e;1 + a � f

�
�
�1

�

+ �
�

1 � b;1 � c;2 + 2a � d � e � f; d + e+ f � 1 � 2a
2 + 2a � b� d � e � f; 2 + 2a � c � d � e � f

�

� 3F2

�
1 + a � d � e;1 + a � d � f; 1 + a � e � f

2 + 2a � b� d � e � f; 2 + 2a � c � d � e � f

�
�
�1

� �
:

Problem . Even though there is no doubt about the existence for the limit of! (a+ m; b+
m; c+ m; d) asm ! 1 , it remains, however, an intriguing question to determine this limit
directly, but without appealing to M. Jackson's evaluation formula.
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1. Introduction

Throughout this paper our general assumption onR is to be a commutative Noetherian
regular ring of prime characteristic p. Let e be a positive integer. Let f : R ! R be
the Frobenius homomorphism de�ned by f (r ) = r p for all r 2 R, whosee-th iteration is
denoted by f e. If the Frobenius homomorphism is �nite, R is said to beF -�nite. Let M
be anR-module. F e

� M = f F e
� m j m 2 M g denotes the Abelian group M with the induced

R-module structure via the e-th iterated Frobenius and it is given by

rF e
� m = F e

� r pe
m for all m 2 M and r 2 R:

In particular, F e
� R is the Abelian group R with the induced R-module structure

rF e
� s = F e

� r pe
s for all r; s 2 R:

An e-th Frobenius map on M is an R-linear map � : M ! F e
� M , equivalently an additive

map � : M ! M such that � (rm ) = r pe
� (m) for all r 2 R and m 2 M . Let R[X ; f e] be

the skew-polynomial ring whose multiplication is subject to the rule Xr = f e(r )X = r pe
X

for all r 2 R. Notice that de�ning an e-th Frobenius map on M is equivalent to endowing
M with a left R[X ; f e]-module structure extending the rule Xm = � (m) for all m 2 M ,
where X (rm ) = � (rm ) = r pe

� (m) = r pe
Xm = f e(r )Xm = ( Xr )m for all r 2 R and

m 2 M .
An e-th Cartier map on M is an R linear map C : F e

� M ! M , equivalently an additive
map C : M ! M such that rC (m) = C(r pe

m) for all r 2 R and m 2 M . An R-module M
is called a Cartier module if it is equipped with a Cartier map. Notice that de�ning an e-th
Cartier map on M is equivalent to endowing M with a right R[X ; f e]-module structure

Email address: mehmet-yesil@outlook.com
Received: 02.05.2019; Accepted: 02.12.2019
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extending the rule mX = C(m) for all m 2 M , where (mX )r = C(m)r = C(mr pe
) =

mr pe
X = mf e(r )X = m(Xr ) for all r 2 R and m 2 M .

When R is complete local andF -�nite, it was shown by R. Y. Sharp and Y. Yoshino
in [8] and independently by M. Blickle and G. Böckle in [1] that there is a bijective
correspondence between the category of leftR[X ; f e]-modules that are Artinian as R-
modules and the category of rightR[X ; f e]-modules that are Noetherian asR-modules.
Sharp and Yoshino used this correspondence to translate known results about Artinian
modules equipped with Frobenius maps into results about Noetherian modules equipped
with Cartier maps, yet Blickle and Böckle used this correspondence to show how their
results about Cartier modules globalize known results about leftR[X ; f e]-modules that
are Artinian as R-modules. (When e = 1 , we simply drop it from notations.)

In this paper, we consider the case thatR = | [[x1; :::; xn ]] is a power series ring over
a perfect �eld | of prime characteristic p, and we introduce an explicit correspondence
between Noetherian R-modules equipped with a Cartier map and Artinian R-modules
equipped with a Frobenius map which coincides with the correspondences in [8] and [1],
more importantly, extends to a computational level (see Theorem5.3). To do this, we
introduce an explicit isomorphism between two modules which are well-known isomorphic
modules but an isomorphism has not been given explicitly before (see Lemma4.2).

2. Noetherian modules with Cartier maps

In this section, we give an explicit formulation for Cartier maps over �nitely gen-
erated modules. To do this, we start with explaining the F e

� R-module structure of
HomR (F e

� R� ; R� ), where � is a positive integer. Let R = | [[x1; :::; xn ]] be a power se-
ries ring over an F -�nite �eld | of prime characteristic p.

Remark 2.1. Let C be a base for| as a | pe
-vector space which includes the identity

element of | . Then F e
� R are freeR-modules with the basis set

B = f F e
� �x � 1

1 : : : x � n
n j 0 � � 1; : : : ; � n < p e; � 2 Cg:

In particular, if | is perfect then F e
� R are freeR-modules with the basis set

B = f F e
� x � 1

1 : : : x � n
n j 0 � � 1; : : : ; � n < p eg:

Henceforth, in this sectionR = | [[x1; :::; xn ]] will denote a power series ring over a perfect
�eld | of prime characteristic p.

Lemma 2.2 ([2, Example 3.0.5]). Let � e : F e
� R ! R be the projection map onto the free

summandRF e
� xpe � 1

1 : : : xpe � 1
n . Then HomR (F e

� R; R) is generated by� e as anF e
� R-module.

Proof. For each basis elementF e
� x � 1

1 : : : x � n
n 2 B, the projection map onto the free sum-

mand RF e
� x � 1

1 : : : x � n
n is de�ned by the rule

F e
� z:� e(� ) = � e(F e

� z:� );

where z = xpe � 1� � 1
1 : : : xpe � 1� � n

n . Since we can obtain all of the projections in this way,
the map

� : F e
� R ! HomR (F e

� R; R) de�ned by �( F e
� u) = � u ;

where � u : F e
� R ! R is the R-linear map � u(� ) = � e(F e

� u� ), is surjective. On the other
hand, if �( F e

� u) = 0 for someu 2 R, then we have

� u(F e
� r ) = � e(F e

� ur ) = F e
� u:� e(F e

� r ) = 0 for all r 2 R.

This means that F e
� u must be zero, and so� is injective. Hence,� is an F e

� R isomorphism.
In other words, � e generatesHomR (F e

� R; R) as anF e
� R-module. �

The following lemma extends Lemma2.2 to free modules.
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Lemma 2.3. For any 	 2 HomR (F e
� R� ; R� ), there exists an� � � matrix U with entries

in R such that 	( � ) = � e(F e
� U� ) where

� e

0

B
@

F e
� v1
...

F e
� v�

1

C
A =

0

B
@

� e(F e
� v1)
...

� e(F e
� v� )

1

C
A

for all (F� v1; : : : ; F e
� v� )t 2 F e

� R� , and � e 2 HomR (F e
� R; R) as in Lemma 2.2.

Proof. If � = 1 , by Lemma 2.2, HomR (F e
� R; R) is generated as anF e

� R-module by
the map � e. If � > 1, we �rst need to describe elements ofHomR (F e

� R; R � ). Since
HomR (F e

� R; R � ) �= HomR (F e
� R; R) � , any R-linear map ' 2 HomR (F e

� R; R � ) can be
expressed as a direct sum of elements ofHomR (F e

� R; R). Therefore, we have' (� ) =
(� 1(� ); : : : ; � � (� )) t for some � i 2 HomR (F e

� R; R) where 1 � i � � , and by Lemma 2.2,
' (� ) = ( � e(F e

� u1� ); : : : ; � e(F e
� u� � )) t for someu1; : : : ; u� 2 R.

Since HomR (F e
� R� ; R� ) �= HomR (F e

� R; R � ) � , any 	 2 HomR (F e
� R� ; R� ) can be ex-

pressed as a direct sum of elements ofHomR (F e
� R; R � ). Therefore, for any element

(v1; : : : ; v� )t 2 R� , we have

	(( F e
� v1; : : : ; F e

� v� )t ) =
X

1� j � �

' j (F e
� vj )

for some' j 2 HomR (F e
� R; R � ). By the previous observation ofHomR (F e

� R; R � ), for each
j , we also have

' j (F e
� vj ) = ( � e(F e

� u1j vj ); : : : ; � e(F e
� u�j vj )) t

for some elementsu1j ; : : : ; u�j 2 R. Thus,

	

0

B
@

F e
� v1
...

F e
� v�

1

C
A =

X

1� j � �

0

B
@

� e(F e
� u1j vj )
...

� e(F e
� u�j vj )

1

C
A :

Hence, for any	 2 HomR (F e
� R� ; R� ), there exists an� � � matrix U with entries uij 2 R

such that 	( � ) = � e(F e
� U� ) where� e takes the components of elements inF e

� R� to their
images under the map� e. �

De�nition 2.4. Let the notation and situation be as in Lemma 2.3. We call the map � e
(� e when � = 1 ) in Lemma 2.3 the trace map on F e

� R� , or just the trace map when the
content is clear.

Proposition 2.5. Let M be a �nitely generated Cartier module equipped with a Cartier
map C which is isomorphic to R� =Im A for some positive integer� and matrix A with
entries in R. Then there exists a Cartier module structureC0 on R� such that the diagram
below is commutative

F� R� C0

����! R�

?
?
y

?
?
y

F� (R� =Im A) ����!
~C

R� =Im A

(2.1)

where the vertical arrows are natural surjections and ~C is isomorphic to C.

Proof. SinceF� R is a freeR-module, there exists anR-linear map C0 : F� R� ! R� such
that the Diagram 2.1 is commutative. �

Let M be a given �nitely generated Cartier module with a Cartier map C which is
isomorphic to R� =Im A for some positive integer� and matrix A with entries in R. By
Proposition 2.5, there exists a Cartier module structureC0 on R� such that C0(F� Im A) �
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Im A. Then by Lemma 2.3, there exists an � � � matrix U with entries in R such that
C0(� ) = �( F� U� ) whose restriction onM is C.

3. Artinian modules with Frobenius maps

In this section, we give an explicit formulation for Frobenius maps over Artinian mod-
ules. Let E = ER (R=m) be the injective hull of the residue �eld of R.

Remark 3.1. Following [3, 13.5.3 Example], E is isomorphic to the module of inverse
polynomials | [x �

1 ; : : : ; x �
s ] whoseR-module structure is extended from the following rule

(�x � 1
1 : : : x � s

s )( �x � � 1
1 : : : x � � s

s )

=

(
��x � � 1+ � 1

1 : : : x � � s + � s
s if � i < � i for all i

0 if � i � � i for any i

for all �; � 2 | , non-negative integers� 1; : : : ; � s, and positive integers � 1; : : : ; � s. There-
fore, E has a natural left R[X ; f e]-module structure by extending additively the action

T(�x � 1
1 : : : x � s

s ) = � pe
x � pe � 1

1 : : : ; x � pe � s
s ;

whereT = X , for all � 2 | and positive integers� 1; : : : ; � s. Notice that T : E ! E de�nes
and e-th Frobenius map. We can also extend this natural left R[X ; f e]-module structure
on E to E � which is given by

T

0

B
@

a1
...

a�

1

C
A =

0

B
@

Ta1
...

Ta�

1

C
A

for all a1; : : : ; a� 2 E, and we call this T as the natural Frobenius onE � .

Let M be an R-module. The Frobenius functor FR from the category of R-modules to
itself is de�ned by FR (M ) := F� R
 R M whereFR (M ) acquires itsR-module structure via
the identi�cation of F� R with R. The resulting (F� R; R)-bimodule structure on FR (M )
satis�es

s � (F� r 
 m) := F� sr 
 m and (F� r 
 m) � s := F� spr 
 m = F� r 
 sm

for all r; s 2 R and m 2 M . The e-th iteration of FR is denoted by F e
R , and it is clearly

given by F e
R (M ) = F e

� R 
 R M . Regularity of R implies that the Frobenius functor is
exact.

Remark 3.2. Following [5, Section 3], let Ce be the category of Artinian left R[X ; f e]-
modules andDe be the category ofR-linear maps M ! F e

R (M ) where M is a Noetherian
R-module and a morphism betweenM ! F e

R (M ) and N ! F e
R (N ) is a commutative

diagram of R-linear maps

M
�

�! N
# #

F e
R (M )

F e
R (� )
�! F e

R (N )
We de�ne the functor � e : Ce ! De as follows: given ane-th Frobenius map � : M ! M ,
we can obtain anR-linear map � : F e

� R 
 M ! M such that � (F� r 
 m) = r� (m) for all
r 2 R, m 2 M . Applying the Matlis duality functor to this map gives the R-linear map
M _ ! (F e

� R 
 M )_ �= F e
� R 
 M _ where the last isomorphism is described in [7, Lemma

4.1]. Conversely, we de�ne the functor 	 e : De ! Ce as follows: given a NoetherianR-
module N with an R-linear map N ! F e

R (N ). Applying the Matlis duality functor to this
map gives the R-linear map ' : F e

R (N _ ) �= F e
R (N )_ ! N _ where the �rst isomorphism

is the composition F e
R (N _ ) �= F e

R (N _ )__ �= F e
R (N __ )_ �= F e

R (N )_ . Then we de�ne the
action of � on N _ by de�ning � (n) = ' (1 
 n) for all n 2 N _ . The mutually inverse exact
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functors � e and 	 e are extensions of the Matlis duality functor which also keeps track of
Frobenius actions.

Given an Artininan R-module M , we can embedM in E � for some positive integer� ,
we can then embedCoker(M ,! E � ) in E � for some positive integer� . Continuing in
this way, we get an injective resolution

0 ! M ! E � A t

�! E � ! � � �

of M , whereA is an � � � matrix with entries in R sinceHomR (E � ; E � ) �= HomR (S� ; R� ),
and soM �= Ker A t .

Proposition 3.3 ([6, Proposition 2.1]). Let M �= Ker A t be an Artininan R-module where
A is an � � � matrix with entries in R. For a given e-th Frobenius map onM , � e(M ) 2
HomR (Coker A; CokerA [pe ]) and is given by an� � � matrix U such thatU Im A � Im A [pe ],
conversely any suchU de�nes an R[X ; f e]-module structure on M which is given by the
restriction to M of the Frobenius mapX : E � ! E � de�ned by X (a) = U t T(a) for all
a 2 E � .

4. An explicit isomorphism

Henceforth R = | [[x1; : : : ; xn ]] will denote a power series ring over a perfect �eld| of
prime characteristic p, and we will identify E with the module of inverse polynomials. Since
F� E is the injective hull of the residue �eld of F� R, by [4, Theorem A25], we know that
HomR (F� R; E ) �= F� E asF� R-modules. In this section, we de�ne an explicit isomorphism
betweenHomR (F� R; E ) and F� E.

Notation 4.1. Let k; k1; k2 be integers. We will write

(1) �x to denote x1 : : : xn ,
(2) �� , �� + �� and k �� to denote the n-tuples (� 1; : : : ; � n ), (� 1 + � 1; : : : ; � n + � n ) and

(k� 1; : : : ; k� n ), respectively,
(3) �x �� to denote x � 1

1 : : : x � n
n , and �xk to denote xk

1 : : : xk
n ,

(4) k1 < �� < k 2 to mean that k1 < � i < k 2 for each i ,
(5) r �� and r �k to denote the elements ofR indexed with the n-tuples �� and (k; : : : ; k),

respectively,
(6) � � to denote n-tuples (� 1; : : : ; � n ).

By Remark 2.1, F e
� R is a free R-module with the basis setB = f F e

� x � 1
1 : : : x � n

n j 0 �
� 1; : : : ; � n < p eg. Therefore, an R-linear map from F� R to any other R-module is simply
a choice of where to send these basis elements.

Lemma 4.2. The map � : Hom R (F� R; E ) ! F� E given by

�( g) =
X

0� ��<p

F� [�xp� 1� �� T(g(F� �x �� ))] (4.1)

for all g 2 HomR (F� R; E ), where T is the natural Frobenius map on E, is an F� R-
isomorphism.

Proof. By the de�nitions of T and g, it can easily be seen that� is well-de�ned and
additive. For any r 2 R, we further have the following

r �( g) =
X

0� ��<p

F� [�xp� 1� �� r pT(g(F� �x �� ))]

=
X

0� ��<p

F� [�xp� 1� �� T(rg(F� �x �� ))] = �( rg)
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which means that � is R-linear. Thus, for F� R-linearity of � , sinceF� R is a freeR-module,
it is enough to show that F� �x �� �( g) = �( F� �x �� g) for any basis elementF� �x �� 2 B, and so
we will show that the right hand sides of following equations are equal.

F� �x
�� �( g) =

X

0� ��<p

F� [�xp� 1� �� + �� T(g(F� �x �� ))] ; (4.2)

�( F� �x
�� g) =

X

0� ��<p

F� [�xp� 1� �� T(g(F� �x �� + �� ))] : (4.3)

Moreover, sinceF� �x �� = F� x � 1
1 � � � F� x � n

n , it is enough to show that

F� x � i
i �( g) =

X

0� ��<p

F� [xp� 1� � 1
1 : : : xp� 1� � i + � i

i : : : xp� 1� � n
n T(g(F� �x �� ))]

=
X

0� ��<p

F� [�xp� 1� �� T(g(F� x � 1
1 : : : x � i + � i

i : : : x � n
n ))] = �( F� x � i

i g)

for each F� x � i
i . To do that we will show the following sets are the same

S1 = f F� [�xp� 1� �� T(g(F� x � 1
1 : : : x � i + � i

i : : : x � n
n ))] j 0 � � i < p g;

S2 = f F� [xp� 1� � 1
1 : : : xp� 1� � i + � i

i : : : xp� 1� � n
n T(g(F� �x �� ))] j 0 � � i < p g:

In the case that � i + � i < p ,

f F� [�xp� 1� �� T(g(F� x � 1
1 : : : x � i + � i

i : : : x � n
n ))] j 0 � � i < p � � i g =

f F� [xp� 1� � 1
1 : : : xp� 1� � i + � i

i : : : xp� 1� � n
n T(g(F� �x �� ))] j � i � � i < p g

since substituting � i with � i + � i in the latter set gives us the former set. On the other
hand, in the case that � i + � i � p,

f F� [�xp� 1� �� T(g(F� x � 1
1 : : : x � i + � i

i : : : x � n
n ))] j p � � i � � i < p g =

f F� [xp� 1� � 1
1 : : : xp� 1� � i + � i

i : : : xp� 1� � n
n T(g(F� �x �� ))] j 0 � � i < � i g

since for eachk 2 f 0; : : : ; � i � 1g, where � i + � i = p + k (i.e. p � � i = � i � k),

F� [�xp� 1� �� T(g(F� x � 1
1 : : : x � i + � i

i : : : x � n
n ))] =

F� [xp� 1� � 1
1 : : : xp� 1� � i + p

i : : : xp� 1� � n
n T(g(F� x � 1

1 : : : xk
i : : : x � n

n ))] =

F� [xp� 1� � 1
1 : : : xp� 1� k+ � i

i : : : xp� 1� � n
n T(g(F� x � 1

1 : : : xk
i : : : x � n

n ))] :
Therefore, S1 = S2, and so the right hand sides of (4.2) and (4.3) are equal.

For injectivity of � , we �rst need the following. For any g 2 HomR (F� R; E ), we
have g(F� �x �� ) 2 | [x �

1 ; : : : ; x �
n ], and so g(F� �x �� ) is a �nite | -linear combination of mono-

mials x � � 1
1 : : : x � � n

n , where � i 's are positive integers. Therefore, for eachF� �x �� 2 B,
F� [�xp� 1� �� T(g(F� �x �� ))] is a �nite | -linear combination of monomials

F� xp� 1� � 1 � p� 1
1 : : : xp� 1� � n � p� n

n :

This means that

�( g) =
X

0� ��<p

F� [�xp� 1� �� T(g(F� �x �� ))] =
X

0� ��<p

� X

0< ��< 1

� � F� �xp� 1� �� � p��
�

:

Therefore, �( g) = 0 if and only if � � = 0 for all �� > 0 since p � 1 � �� < p implies that
p � 1 � �� � p�� < 0 and the terms F� �xp� 1� �� � p�� 6= F� �xp� 1� �� � p�� unless �� = �� and �� = �� at
the same time. Hence,

�( g) = 0 , T(g(F� �x �� )) = 0 for all 0 � �� < p

, g(F� �x �� ) = 0 for all 0 � �� < p

, g = 0 :
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For surjectivity of � , we take an elementF� e of F� | [x �
1 ; : : : ; x �

n ]. We know that it can
be written as a �nite sum of terms F� �x � � 1

1 : : : x � � n
n , where � 2 | , and these terms can be

written as

F� �x � � 1
1 : : : x � � n

n = F� xk1
1 : : : xkn

n F� � px � p� 1
1 : : : x � p� n

n

= F� xk1
1 : : : xkn

n F� T(�x � � 1
1 : : : x � � n

n );

where � = � p, and for eachi , ki = p� i � � i and 0 � ki < p . Now we rewrite F� e as a �nite
sum

X

0� k1 ;:::;k n <p

F� xk1
1 : : : xkn

n F� T(ek1 ;:::;k n );

where ek1 ;:::;k n 2 | [x �
1 ; : : : ; x �

n ], and we choose a mapg 2 HomR (F� R; E ) which sends
F� xp� 1� k1

1 : : : xp� 1� kn
n to ek1 ;:::;k n . This means that �( g) = F� e, i.e. � is surjective.

Hence, it is an isomorphism ofF� R-modules. �

5. The correspondence

In this section, we introduce our explicit correspondence between �nitely generated
Cartier modules and Artinian modules equipped with a Frobenius map via the Matlis
duality. We use Lemma 4.2 repeatedly to give our explicit proofs.

Proposition 5.1. Let � be a non-negative integer. There is a bijective correspondence
betweenHomR (F� R� ; R� ) and HomR (E � ; F� E � ) such that the trace map� on F� R� cor-
responds to the natural Frobenius mapT on E � and �( F� U� ) corresponds toU t T for any
� � � matrix U with entries in R.

Proof. We start by identifying HomR (F� R; E ) with F� E using the isomorphism� de�ned
in Lemma 4.2. Then we �rst assume that � = 1 and let � : F� R ! R be a Cartier map.
We know that there is an elementu 2 R such that � (� ) = � (F� u� ). Applying the Matlis

duality functor to this map gives us HomR (R; E )
f 7! f � �
����! HomR (F� R; E ). Next we use the

isomorphism E
e7! f e���! HomR (R; E ), where f e(1) = e, to get the following composition:

E ! HomR (R; E ) ! HomR (F� R; E ) ! F� E
e 7! f e 7! f e � � 7! �( f e � � )

�( f e � � ) = �( f e � � (F� u� )) (by F� R-linearity of � )

= F� u�( f e � � ) = F� u
X

0� ��<p

F� [�xp� 1� �� T(f e � � (F� �x �� ))]

= F� u[F� T(f e � � (F� �xp� 1))] = F� u[F� T(f e(1))]

= F� uF� T(e) = F� (uT(e)) :

Therefore, the composition above gives us the Frobenius mapuT on E. In particular, if
u = 1 we get the natural Frobenius T on E.

We now assume that� > 1 and let � : F� R� ! R� be a Cartier map. We know that
there is an � � � matrix U with entries (uij )1� i;j � � in R such that � (� ) = �( F� U� ). Ap-

plying the Matlis duality functor to this map gives HomR (R� ; E )
f 7! f � �
����! HomR (F� R� ; E ).



1632 M. Ye³il

Then we get the following composition

E � 99K F� E �

a = ( a1; : : : ; a� )t (�( f a � � � � 1); : : : ; �( f a � � � � � )) t

7! 7!

HomR (R; E ) � HomR (R� ; E )
(f a1 ; : : : ; f a� )t (f a � � � � 1; : : : ; f a � � � � � )t

7! 7!

HomR (F� R� ; E ) 7�! HomR (F� R; E ) �

f a f a � �

where a 2 E � and we use the following obvious isomorphisms

E � ! HomR (R; E ) � given by (a1; : : : ; a� )t 7! (f a1 ; : : : ; f a� )t

such that f ai (1) = ai for each i ,

HomR (R; E ) � ! HomR (R� ; E ) given by (g1; : : : ; g� )t 7! g

such that g(ei ) = gi (1) for each elementary vectorei , and

HomR (F� R� ; E ) ! HomR (F� R; E ) � given by h 7! (h � � 1; : : : ; h � � � )t

such that the map � i : F� R ! F� R� given by F� r 7! F� rF � ei is the canonical injection for
eachi . Then for a �xed i where 1 � i � � , we have

�( f a � � � � i ) =
X

0� ��<p

F�

�
�xp� 1� �� T

�
f a

�
�

�
F� U� i (F� �x �� )

� � ��

Since

f a

�
�

�
F� U� i (F� �x �� )

� �
= f a

�
�

�
(F� u1i �x �� ; : : : ; F� u�i �x �� )t �

�

= f a

� �
� (F� u1i �x �� ); : : : ; � (F� u�i �x �� )

� t
�

=
X

1� j � �

f aj

�
� (F� uji �x �� )

�
;

we have

�( f a � � � � i ) =
X

1� j � �

� X

0� ��<p

F�

h
�xp� 1� �� T

�
f aj

�
� (F� uji �x �� )

� �i �
:

Then by de�nition of � ,

�( f a � � � � i ) =
X

1� j � �

F� uji �( f aj � � )

=
X

1� j � �

F� uji F� T
�
f aj

�
� (�xp� 1)

� �

=
X

1� j � �

F� uji T(aj ) = F�
� X

1� j � �

uji T(aj )
�
:

Therefore, for 1 � i � �
0

B
@

�( f a � � � � 1)
...

�( f a � � � � � )

1

C
A =

0

B
@

F�
� P

1� j � � uj 1T(aj )
�

...
F�

� P
1� j � � uj� T(aj )

�

1

C
A

which is equal to
F� [U t (T((a1; : : : ; a� )t )] = F� [U t T(a)]:

Hence, the composition above gives us the Frobenius mapU t T on E � . In particular, if U
is the identity matrix we get the natural Froebenius T on E � .
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The construction above gives us a map
 : Hom R (F� R� ; R� ) ! HomR (E � ; F� E � )
de�ned by 
( � ) = � such that � (� ) = �( F� U� ) and �( � ) = F� U t T(� ). We claim
that this map actually is an F� R-linear isomorphism. Let 
( F� r:� ) = � 0 for any r 2
R. Then since (F� r:� )( � ) = � (F� r � ) = �( F� Ur� ), we have � 0(� ) = F� (Ur)t T(� ) =
F� rF � U t T(� ) = F� r �( � ), i.e. 
( F� r:� ) = � 0 = F� r � = F� r 
( � ), and so
 is F� r -linear.
Surjectivity of 
 is clear since for any Frobenius map�( � ) = F� U t T(� ) we can de�ne a
Cartier map � (� ) = �( F� U� ). We also have
( � ) = 0 ) U t T = 0 ) U = 0 ) � = 0 ,
because if any entry ofU was non zero there would be non zero elements in the image of
U t T, i.e. 
 is injective. This means that we get the promised bijective correspondence. �

Next we see that the Matlis duality functor (� )_ = Hom R (� ; E ) commutes with F� (� )
(cf. Lemma 5.1 in [1]).

Lemma 5.2. Let M be a �nitely generated or an Artinian R-module. Then F� M _ �=
(F� M )_ .

Proof. We �rst assume that M is �nitely generated. Then M has a presentation� � � !
R� A�! R� � M ! 0 where A is an � � � matrix with entries in R. If we apply the

Matlis dual to this presentation we get 0 ! M _ ,! E � A t

�! E � ! : : : . SoM _ = Ker A t =
AnnE � A t . On the other hand, F� M has a presentation� � � ! F� R� F � A��! F� R� � F� M !
0. Then if we apply the Matlis dual again and identify HomR (F� R; E ) with F� E using the

isomorphism � de�ned in Lemma 4.2, we get 0 ! (F� M )_ ,! F� E � F � A t

���! F� E � ! : : : ,
and so(F� M )_ = Ker F� A t = Ann F � E � F� A t = F� (Ann E � A t ) = F� M _ .

If now M is Artinian, we know that M _ is Noetherian andM �= M __ . Then it follows
from the �rst assumption, F� M _ �= (F� M _ )__ �= (F� M __ )_ �= (F� M )_ . �

Next theorem extends Proposition 5.2 in [1] to a computational level.

Theorem 5.3. The Matlis duality functor induces a bijective correspondence between
�nitely generated Cartier modules and Artinian modules equipped with Frobenius maps
given as follows: if M is a �nitely generated Cartier module with a square matrix U
de�ning the Cartier module structure on M , then the corresponding Artinian module is
M _ with the corresponding Frobenius mapU t T.

Proof. Let (M; C ) be a �nitely generated Cartier module with a square matrix U de�ning

Cartier module structure on M . Then we have a presentation ofM as follows� � � ! R� A�!
R� � M ! 0 and the following commutative diagram with exact rows

F� R� ����! F� M ����! 0

�( F � U� )
?
?
y

?
?
y C

R� ����! M ����! 0
where C is induced by �( F� U� ) on M . If we apply the Matlis dual to the diagram above
and if we use Lemma4.2, Proposition 5.1, and Lemma 5.2 we get

0 ����! M _ ����! E �

�

?
?
y

?
?
y F � U t T

0 ����! F� M _ ����! F� E

where� is the restriction of F� U t T on M _ . The same construction follows the converse. �

Question: The theory behind explicit results in this paper works for the case that
R = | [[x1; :::; xn ]] is a power series ring over anF -�nite �eld | of prime characteristic p.
Is it possible to write an explicit isomorphism betweenHomR (F� R; E ) and F� E for the
F -�nite case as in Lemma 4.2 ?
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Abstract

In this paper we introduce the concepts ofCD-rings and CD-modules. Let R be a ring
and M be an R-module. We call R a CD-ring in case every cosingularR-module is
discrete, and M a CD-module if every M -cosingular R-module in � [M ] is discrete. If R
is a ring such that the class of cosingularR-modules is closed under factor modules, then
it is proved that R is a CD-ring if and only if every cosingular R-module is semisimple.
The relations of CD-rings are investigated with V -rings, GV -rings, SC-rings, and rings
with all cosingular R-modules projective. If R is a semilocal ring, then it is shown that
R is right CD if and only if R is left SC with Soc(RR) essential in RR. Also, being a
V-ring and being a CD-ring coincide for local rings. Besides of these, we characterize
CD-modules with �nite hollow dimension.
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1. Introduction

Throughout this paper, R is always an associative ring with identity and all modules are
unitary right R-modules, unless otherwise stated. LetM be an R-module. An R-module
N is generated byM or M -generated if there exists an epimorphism f : M (I ) ! N for
some index setI . An R-module N is said to be subgenerated byM if N is isomorphic
to a submodule of anM -generated module. We denote by� [M ] the full subcategory of
R-modules whose objects are allR-modules subgenerated byM (see [18]). A submodule
L of M is essential in M , denoted by L � e M , if for every nonzero submoduleK of M ,
L \ K 6= 0 . As a dual concept, a submoduleN of a module M is called small in M ,
denoted by N � M , if for every proper submoduleL of M , N + L 6= M . A module M is
called hollow if every proper submodule ofM is small in M .
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Rad(M ), Soc(M ), and Z (M ) denote the radical, the socle, and the singular submodule
of M , respectively, and J (R) stands for the Jacobson radical of a ringR. Let M be a
module. The notations N � M and N � � M will denote a submodule and a direct
summand of M , respectively.

Let M and N be two modules. ThenN is said to be small (M -small) if there exists
a module L (L 2 � [M ]) such that N � L (in � [M ]). It is well-known that a module is
small (M -small) if and only if it is small in its injective envelope (in � [M ]). A submodule
N of a module M lies above a direct summandK of M if N=K � M=K . Let N and L
be submodules ofM . N is called asupplement ofL in M if it is minimal with respect to
the property M = N + L, equivalently, M = N + L and N \ L � N . The module M
is called supplementedif for each submodule A ofM , there exists a submoduleB of M
such that M = A + B and A \ B � B . A submodule N of M has a weak supplement
L in M if N + L = M and N \ L � M , and M is called weakly supplementedif every
submoduleN of M has a weak supplement. Any moduleM is called amply supplemented
if for any two submodules A and B with M = A + B , A contains a supplement ofB in
M . Recall that M is called H -supplementedprovided for every submoduleN of M , there
exists a direct summandD of M such that N + D

N � M
N and N + D

D � M
D . Also M is called

� -supplementedin case for everyN � M , there exists a direct summandK of M such
that M = N + K and N \ K � K , and in [17], M is called principally � -supplemented
in case for everym 2 M , there exists a direct summandK of M such that M = mR + K
and mR \ K � K .

In [15], Talebi and Vanaja de�ne Z M (N ) as a dual ofM -singular submodule as follows:
Z M (N ) = Rej (N; MS) =

T
f Kerf j f : N ! S; S 2 MSg =

T
f U � N j N=U 2 MSg

where MS denotes the class of allM -small modules. They callN an M -cosingular (non-
M -cosingular) moduleif Z M (N ) = 0 (Z M (N ) = N ). Clearly, every M -small module isM -
cosingular. We should note that cosingular and non-cosingular concepts meanR-cosingular
and non-R-cosingular. Let S0 and S denote the classes of left and right small modules
respectively. Recall from [15], Z (RR) = Rej (R; S0) =

T
f Kerf j f : R ! U; U 2 S0g and

Z (RR ) = Rej (R; S) =
T

f Kerf j f : R ! U; U 2 Sg. By [1, Corollary 8.23], Z (RR) and
Z (RR ) are two-sided ideals ofR. A ring R is said to beright (left) cosingular if Z (RR ) = 0
(Z (RR) = 0 ).

In [6], Keskin and Tribak introduce and study modules M such that every M -cosingular
module in � [M ] is projective in � [M ]. They call such modulesCOSP. They investigate
some general properties ofCOSP-modules. COSP-modules are also characterized when
every injective module in � [M ] is amply supplemented. Finally they show that a COSP-
module is Artinian if and only if every submodule has �nite hollow dimension.

In [14], the present authors work on rings for which every (simple) cosingular module is
projective. They show that for a ring R, every simple cosingularR-module is projective
if and only if R is a GV (GCO) ring. They give some conditions for a ringR to have the
property that every cosingular R-module is projective. It is also shown for a right perfect
ring R under an assumption that every cosingularR-module is projective if and only if R
is a left and right Artinian serial ring with J (R)2 = 0 .

It is known by [ 9, Theorem 2.3] that a ring R is right perfect if and only if every
quasi-projective R-module is discrete. Inspired by [6] and [14], in this paper, we study
rings R (resp., modulesM ) such that every (resp., M -)cosingular R-module (resp., in
� [M ]) is discrete. We call them CD-rings (resp., CD-modules). The aim of this article is
to characterize rings for which every cosingular module is discrete. We investigate basic
properties of CD-modules. It is obtained that every small module over a right CD-ring
is semisimple. It is proved that a lifting CD-module has an essential socle. We show that
every module over a rightV -ring is CD, and so every rightV -ring is right CD, the converse
is true for local rings. By [7, Proposition 2.7], it is known that every module with �nite
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hollow dimension is semilocal. We observe that a semilocal Artinian (or Noetherian)CD-
module has �nite hollow dimension. We also give a characterization of aCD-module with
�nite hollow dimension. This characterization reveals that this kind of module is �nitely
generated. On the other hand, we investigate under what conditions aCD-module with
�nite hollow dimension is �nitely cogenerated. We show that for a semilocal ring R, R is
right CD if and only if R

Z (RR )
is semisimple. For a right perfect ring R, it is proved that

every Z 2-torsionfree R-module is (quasi-)discrete if and only if R is right CD. We also
present some examples to illustrate di�erent concepts.

2. CD-Modules and CD-Rings

In this section, we introduce a new class of modules (resp. rings), namelyCD-modules
(resp. CD-rings). An R-module M is CD provided that every M -cosingular R-module in
� [M ] is discrete. The class ofCD-modules contains semisimple modules andV-modules.
We introduce and study rings for which every cosingular module is discrete, in this case
we call them right CD-rings. Every right V -ring is right CD. We also investigate general
properties and some characterizations ofCD-rings. For a ring R, we show that R is right
CD if and only if every cosingular module is semisimple, under the additional standing
assumption that the class of cosingularR-modules is closed under taking homomorphic
images.

Let us recall some conditions on a moduleM as follows:

(D0) For every decompositionM = M 1 � M 2 of M , M 1 and M 2 are relatively projective;
(D1) Every submodule ofM lies above a direct summand ofM ;
(D2) If M=A �= B � � M , then A � � M ;
(D3) If M 1 and M 2 are direct summands ofM with M = M 1+ M 2, then M 1\ M 2 � � M .

The module M is called discrete if it satis�es ( D1) and (D2), quasi-discreteif it satis�es
(D1) and (D3), and lifting if M satis�es (D1). We have the following hierarchy:
discrete ) quasi-discrete ) lifting ) H -supplemented ) � -supplemented ) supple-
mented.

It is not hard to verify that a ring R is right CD if and only if the R-module RR is CD
if and only if every cyclic R-module is CD.

Proposition 2.1. Any homomorphic images of aCD-module is CD. In particular, any
direct summand of aCD-module is CD.

Proof. Let M be CD and N � M . Suppose that L is an M=N -cosingular module in
� [M=N ]. Since � [M=N ] � � [M ], we conclude that Z M (L ) � Z M=N (L ). Hence L is
M -cosingular in � [M ]. Therefore, L is discrete. �

As a consequence, every ring homomorphic image of aCD-ring is CD. The next result
is an immediate consequence of Proposition2.1.

Corollary 2.2. The following are equivalent for a ringR.

(1) Every R-module is CD;
(2) Every free R-module is CD;
(3) Every projective R-module is CD;
(4) Every �at R-module is CD;
(5) R is right CD and the class ofCD-modules is closed under direct sums.

Corollary 2.3. Let R be a right CD-ring and M be a module with cyclic radical. Then
Rad(M ) is CD as both anR-module and anR=Z (RR )-module.

Proof. Since R is right CD and Rad(M ) is cyclic, clearly, Rad(M ) is CD as an R-
module. On the other hand, by [16, Proposition 2.1], Rad(M ) is an R=Z (RR )-module.
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Also, by Proposition 2.1, R=Z (RR ) is a right CD-ring. Therefore Rad(M ) is CD as an
R=Z (RR )-module. �

Proposition 2.4. If a module M is CD as an R=Z (RR )-module, then it is CD as an
R-module. The converse holds ifM is a cosingular R-module.

Proof. Let N 2 � [M ] be anM -cosingularR-module. By [16, Proposition 2.1], N Z R (RR ) �
Z R (N ). Note that Z R (N ) � Z M (N ). Since N is M -cosingular, N Z R (RR ) = 0 . Hence
N has anR=Z (RR )-module structure. By hypothesis, N is a discreteR=Z (RR )-module,
and so it is a discreteR-module. Thus M is CD as an R-module. Assume now that
M is a CD cosingular R-module. SinceM is cosingular, M Z R (RR ) � Z R (M ) implies
that M is R=Z (RR )-module. Any M -cosingular R=Z (RR )-module N in � [M ] is also an
M -cosingular R-module. Then N is discrete as anR-module. HenceN is a discrete
R=Z (RR )-module. This completes the proof. �

Let A be a class ofR-modules. An R-module M is said to beA-projective in caseM is
projective relative to all elements of A.

Theorem 2.5. Let A be a class ofR-modules and consider the following conditions.

(1) Every module in A is semisimple;
(2) Every module in A is discrete;
(3) Every module in A is quasi-discrete;
(4) Every module in A satis�es (D0);
(5) Every module in A is A-projective.

Then (1) ) (2) ) (3) ) (4). If A is closed under �nite direct sums, then(4) ) (5). If A
is closed under homomorphic images, then(5) ) (1).

Proof. (1) ) (2) It is clear by de�nitions.
(2) ) (3) It follows from [ 8, Lemma 4.6].
(3) ) (4) By [8, Lemma 4.23], every quasi-discrete module satis�es(D0).
Assume now that A is closed under �nite direct sums. (4) ) (5) Let M 1; M 2 2 A and
M = M 1 � M 2. By assumption M 2 A, and by (4), M satis�es (D0). Hence M 1 and M 2
are relatively projective.
Let A be closed under homomorphic images.(5) ) (1) Let M 2 A and L � M . By
assumption,M=L 2 A, and it is M -projective by (5). It follows that L is a direct summand
of M . Therefore M is semisimple. �

If we replaceA with the class of cosingular modules, we have the following result.

Corollary 2.6. If the class of cosingularR-modules is closed under homomorphic images,
then the following statements are equivalent.

(1) R is right CD;
(2) Every cosingular R-module is semisimple;
(3) Every cyclic cosingular R-module is semisimple;
(4) Every cosingular R-module is quasi-discrete;
(5) Every cosingular R-module satis�es (D0);
(6) Every cosingular R-module is N -projective for every cosingularR-module N .

If any of above statements holds, then every cosingularR-module is quasi-projective.

Proposition 2.7. Let R be a right perfect ring andM an R-module. Then the following
are equivalent.

(1) Every direct product of M -projective R-modules is discrete;
(2) Every direct product of M -projective R-modules satis�es (D0).

In this case, the class ofM -projective R-modules is closed under direct products.
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Proof. (1) ) (2) It follows from [ 8, Lemma 4.23].
(2) ) (1) Let N =

Q
i 2 I N i be a product ofM -projective R-modules. Then, by assumption

N � N �= N � N satis�es (D0). HenceN is quasi-projective. SinceR is right perfect, by
[9, Theorem 2.3],N is discrete.

To prove the last statement, note that R is right perfect, so M has a projective cover
f : P ! M . By assumption, N � P satis�es (D0) where N =

Q
i 2 I N i is a product of

M -projective R-modules. HenceN is P-projective. Therefore N is M -projective. �

As a consequence of Proposition2.7, we give a new characterization of commutative
Artinian rings.

Corollary 2.8. Let R be a commutative perfect ring. Then the following are equivalent.
(1) R is Artinian;
(2) Every direct product of projective R-modules is discrete;
(3) Every direct product of projective R-modules is quasi-discrete;
(4) Every direct product of projective R-modules satis�es (D0).

Proof. (1) ) (2) By [2, Theorems 3.3 and 3.4], every direct product of projectiveR-
modules is projective and also discrete by [9, Theorem 2.3].
(2) ) (3) Obvious.
(3) ) (4) It follows from [ 8, Lemma 4.23].
(4) ) (1) Let P be a direct product of projective R-modules and M an arbitrary R-
module. There exists a setI and a submoduleL of R(I ) such that M �= R(I )=L. Let
N = P � RI which is a direct product of projective modules. By (4), N satis�es (D0). It
follows that P is RI -projective. By [8, Proposition 4.31],P is R(I )=L-projective. HenceP is
M -projective. Therefore P is a projective R-module. The result follows from [2, Theorem
3.4]. �

Now we can replaceA in Theorem 2.5 with the class of small modules.

Corollary 2.9. Let R be a ring. Then the following statements are equivalent.
(1) Every small R-module is semisimple;
(2) Every small R-module is discrete;
(3) Every small R-module is quasi-discrete;
(4) Every small R-module satis�es (D0);
(5) Every small R-module is N -projective for every small R-module N .

Let M be a module. In [19], M is calledcoatomic if every proper submodule is contained
in a maximal submodule, or equivalently, for a submoduleN of M , if Rad(M=N ) = M=N ,
then M = N . Finitely generated modules and semisimple modules are coatomic. The
following result exhibits some basic properties ofCD-modules.

Proposition 2.10. Let M be aCD-module. Then the following hold.
(1) Every M -small module is semisimple. In particular, every small submodule ofM

is semisimple.
(2) Rad(M ) � Soc(M ).
(3) M is coatomic.
(4) Rad(M ) � M .
(5) Every �nitely generated submodule ofRad(M ) is Artinian (Noetherian).

Proof. (1) Every M -small module isM -cosingular, therefore discrete. Since the class of
M -small modules is closed under �nite direct sums and homomorphic images, by Theorem
2.5, every M -small module is semisimple.
(2) By (1), Rad(M ) is semisimple and henceRad(M ) � Soc(M ).
(3) By (2), Rad(M ) � Soc(M ). If Soc(M ) = M , then Rad(M ) = 0 and if Soc(M ) 6= M ,
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then Rad(M ) 6= M . In both conditions, M has a maximal submodule. Applying the same
argument for M=N where N � M implies that N is contained in a maximal submodule
of M sinceM=N is a CD-module. Thus M is coatomic.
(4) Assume that Rad(M ) is not small in M . Then there exists a proper submoduleN of
M such that M = Rad(M ) + N . By (3), N is contained in a maximal submoduleK of
M . It follows that K = M . This contradiction implies Rad(M ) � M .
(5) The result follows from the fact that Rad(M ) is semisimple. �

By the above proposition, a CD-module cannot be radical and small right ideals of
right CD-rings are semisimple as anR-module.

Corollary 2.11. Let R be a right CD-ring. Then the following statements hold.
(1) Every small R-module is semisimple.
(2) J (R) � Soc(RR ).

For an easy reference we note the following result.

Lemma 2.12. Let M be a module such thatM=Z M (M ) is semisimple, thenRad(M ) �
Z M (M ). The converse holds ifM is a lifting module.

Proof. Let M be a module such thatM=Z M (M ) is semisimple and� denote the natural
epimorphism from M onto M=Z M (M ) with kernel Z M (M ). SinceM=Z M (M ) is semisim-
ple, Rad(M=Z M (M )) = 0 . Hence � (Rad(M )) = 0 . Therefore Rad(M ) � Z M (M ).
Conversely, assume thatRad(M ) � Z M (M ). Let N=Z M (M ) � M=Z M (M ). By hypoth-
esis, there exists a submoduleA � N such that M = A � B with N \ B small in B . Then
N \ B � Rad(M ) and henceN \ B � Z M (M ). SinceN \ (B + Z M (M )) = Z M (M )+ N \ B ,
M=Z M (M ) = N=Z M (M ) �

�
(B + Z M (M ))=Z M (M )

�
. This completes the proof. �

Let U be a submodule of a moduleM . Recall that M is called U-lifting if for any
submodule N of M , there exists a decompositionM = A � B such that A � N and
N \ B � U.

Proposition 2.13. Consider the following conditions for a moduleM .
(1) M is Z M (M )-lifting;
(2) M=Z M (M ) is semisimple;

Then (1) ) (2). The converse holds ifM is lifting.

Proof. (1) ) (2) Let N be a submodule ofM with Z M (M ) � N . There exists a
submodule A � N such that M = A � B and N \ B � Z M (M ). Then M=Z M (M ) =
N=Z M (M ) � (B + Z M (M ))=Z M (M ).
Assume that M is lifting. (2) ) (1) Let N be any submodule ofM . By assumption, N has
a submoduleA such that M = A � B with N \ B small in B . Then N \ B � Rad(M ). By
Lemma 2.12, all small submodules ofM are contained inZ M (M ). HenceN \ B � Z M (M ).
This completes the proof. �

Theorem 2.14. Let M be a lifting CD-module. Then Soc(M ) is essential in M .

Proof. Assume that Soc(M ) is not essential in M . There exists a nonzero submodule
N of M such that it is maximal with respect to the property Soc(M ) \ N = 0 . Then
Soc(M ) � N is an essential submodule ofM . M being lifting implies that there exists a
direct summand A of M such that A � N , M = A � B with N \ B small in B and also
in M . So N \ B is semisimple by Lemma2.10. Then N \ B = 0 . HenceM = N � B . It
follows that N is a lifting CD-module as a direct summand ofM . Let X be any submodule
of N . There exists a direct summandY � X of N such that N = Y � Z with X \ Z
small in Z and in N and so in M . Again by Lemma 2.10, X \ Z is semisimple. Hence
X \ Z = 0 . Thus N = X � Z . It follows that N is semisimple. ThusN = 0 and Soc(M )
is essential inM . �
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Corollary 2.15. Let M be aCD-module having a decompositionM = Soc(M ) � N with
N lifting. Then M is semisimple.

Proof. As a direct summand, N is a lifting CD-module. By Theorem 2.14, Soc(N ) is
essential inN . HenceN = 0 . So M is semisimple. �

Corollary 2.16. Let R be a right CD-ring having a decompositionR = Soc(RR ) � N
with N lifting as an R-module. Then R is semisimple.

Recall from [18] that a ring R is a right V -ring provided that every simple R-module is
injective, equivalently, R is a right V -ring if and only if every R-module has zero radical.
Since the only cosingular module over a rightV -ring is zero, every right V -ring is right
CD. A ring R is right generalized co-semisimple(GCO for short) provided that every
simple singular R-module is injective, and R is a right GV-ring if each simpleR-module
is either injective or projective. Note that R is right GCO if and only if it is right GV .
Observe that a right GV -ring with zero socle is a rightV -ring. The next result shows that
every module over a right V -ring (equivalently, a right CD local ring) is CD.

Theorem 2.17. Let R be a ring and consider the following conditions.
(1) R is a right V -ring;
(2) Every R-module is CD;
(3) R is right CD.

Then (1) ) (2) ) (3). If R is local, then all of them are equivalent.

Proof. (1) ) (2) Let R be a right V -ring and M an R-module. For any M -cosingular
module N 2 � [M ], by [16, Proposition 2.10], Z M (N ) = N = 0 . HenceN is discrete, thus
M is CD.
(2) ) (3) Obvious.
Assume now that R is a local ring. (3) ) (1) Let a 2 R. SinceR is local, it is principally
hollow (see [5]). This implies that aR is small in R. Then for any homomorphismf : R ! S
with S small, f (a)R is small in S. On the other hand, R being right CD implies that S is
semisimple by Corollary2.11(1). Hencef (a)R is a direct summand ofS. Thus f (a)R = 0 ,
i.e., a 2 Kerf . It follows that a 2 Z R (RR ), and so R = Z R (RR ). By [15, Corollary 2.6],
R is a right V -ring. �

Proposition 2.18. Let R be a ring such that every cosingular module is amply supple-
mented. ThenR is right GV if and only if every cosingular R-module is projective. In this
caseR is right CD and the class of cosingularR-modules is closed under homomorphic
images.

Proof. Assume that R is right GV . Let 0 6= M be a cosingularR-module, 0 6= x 2 M
and K a maximal submodule of xR. Now the simple module xR=K is either singular
or projective (but not both). If xR=K is singular, then it will be noncosingular by [10,
Theorem 4.1]. Consider the natural epimorphism� : xR ! xR=K . By assumption, xR is
amply supplemented. Now [15, Theorem 3.5] implies that 0 = � (Z 2(xR)) = Z 2(xR=K ) =
Z (xR=K ) = xR=K . which is a contradiction. Then xR=K is projective and soK is a
direct summand ofxR. HencexR and, thereforeM is semisimple. LetM = � i 2 I M i where
each M i is simple. Then M i is singular or projective. Assume that it is singular. Then
[10, Theorem 4.1] implies that it is noncosingular that contradicts M is cosingular. Hence
each M i is projective and so isM . Conversely, suppose that every cosingular module
is projective. In particular every simple cosingular module is projective. Let M be a
simple singular module. ThenM is either small or injective. If M is small, then M is
projective by supposition since every small module is cosingular. The moduleM being
simple singular implies that M cannot be projective. Thus M is injective. It follows that
R is right GV . �
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A ring R is right (resp. left) nonsingular if Zr (R) = f x 2 R j xI = 0 ; I � e RRg = 0
(resp. Z l (R) = f x 2 R j Ix = 0 ; I � e RRg = 0 ). A ring R is right (resp. left) SI provided
that every singular right (resp. left) R-module is injective. These rings were introduced
and fully investigated by Goodearl in [4].

Remark 2.19. If for a CD-module M , the class ofM -cosingular modules is closed under
factor modules, then everyM -cosingular M -injective module is zero. So for a rightCD-
ring R such that the class of cosingularR-modules is closed under homomorphic images
(e.g. semiperfect rightSI -rings), every cosingular injectiveR-module is zero. This answers
one of the questions posed by Talebi and Vanaja (see [15, Page 1460, Question 3]).

Proposition 2.20. Let R be a right GV -ring. Then R is right CD if and only if every
cyclic cosingular R-module is amply supplemented.

Proof. Assume that every cyclic cosingularR-module is amply supplemented. Let0 6= M
be a cosingular module. By a similar discussion in the proof of Proposition2.18, M is
semisimple. ClearlyM is discrete. Conversely, assume thatR is CD and let M be a cyclic
cosingular module. By assumption,M is discrete. SoM is lifting and obviously amply
supplemented. �

Remark 2.21. Let R be a right cosingular right CD-ring. Then by Corollary 2.6, every
cosingular R-module is R-projective. In particular, any �nitely generated cosingular R-
module is projective.

A module M is said to have�nite hollow dimension in case there exists an epimorphism
f : M !

Q n
i =1 H i with all H i hollow and Kerf � M . In this case, it is said that the

hollow dimension ofM is n. Recall that a module M is called semilocal if M=Rad(M ) is
semisimple (see [7] for details). A ring R is semilocal if the right R-module R is semilocal,
i.e., R=J(R) is a semisimple ring. By [7, Proposition 2.7], every module with �nite hollow
dimension is semilocal. The converse statement holds for �nitely generated modules. In
particular, for CD modules we have the following result.

Proposition 2.22. Let M be an Artinian (or Noetherian) and CD-module. Then the
following conditions are equivalent.

(1) M has �nite hollow dimension;
(2) M is weakly supplemented;
(3) M is semilocal.

Proof. (1) ) (2) ) (3) By [7, Proposition 2.7].
(3) ) (2) SinceM is a CD-module, by Proposition 2.10, Rad(M ) is small in M . The rest
is clear by [7, Proposition 2.7].
(2) ) (1) The module M being CD implies that Rad(M ) � M , and so the hollow dimen-
sions ofM and M=Rad(M ) are equal due to [7, Remark 1.4]. On the other hand, since
M is weakly supplemented,M=Rad(M ) is weakly supplemented. Hence by [7, Corollary
2.3], the hollow dimension and length ofM=Rad(M ) are equal. The hypothesis and the
semisimplicity of M=Rad(M ) imply that M=Rad(M ) is both Artinian and Noetherian.
Thus M=Rad(M ) has �nite length. Therefore the hollow dimension of M is �nite. �

The next result shows that every CD-module with �nite hollow dimension is �nitely
generated.

Theorem 2.23. The following are equivalent for aCD-module M .
(1) M has �nite hollow dimension;
(2) M is semilocal and �nitely generated.

Proof. In light of [ 7, Proposition 2.7], it is enough to prove that a CD-module with �nite
hollow dimension is �nitely generated. Let M be a CD-module with �nite hollow dimen-
sion. By [13, Corollary 1.11], M=Rad(M ) is semisimple and Artinian. HenceM=Rad(M )
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is �nitely generated. On the other hand, M being a CD-module implies that Rad(M ) is
small in M by Proposition 2.10. Therefore M is �nitely generated due to [1, Theorem
10.4]. �

We now investigate under what conditions aCD-module with �nite hollow dimension
is �nitely cogenerated.

Proposition 2.24. The following statements are equivalent for aCD-module M with
�nite hollow dimension.

(1) M is �nitely cogenerated;
(2) Rad(M ) is Artinian;
(3) Soc(M ) is Artinian;
(4) M is Artinian.

Proof. (1) ) (2) Rad(M ) is �nitely cogenerated as a submodule of �nitely cogenerated
M , and by Proposition 2.10, Rad(M ) is semisimple. HenceRad(M ) is Artinian.
(2) ) (1) Since M has �nite hollow dimension, M=Rad(M ) is semisimple Artinian by
[13, Corollary 1.11], and soM=Rad(M ) is �nitely cogenerated. On the other hand, by
Proposition 2.10, Rad(M ) is semisimple. Hence (2) implies thatRad(M ) is �nitely co-
generated. Since both of Rad(M ) and M=Rad(M ) are �nitely cogenerated, M is �nitely
cogenerated.
(1) ) (3) By [1, Theorem 10.4], Soc(M ) is �nitely cogenerated, and so it is Artinian.
(3) ) (1) SinceM has �nite hollow dimension, Proposition 2.22 implies that M is semilo-
cal, i.e., M=Rad(M ) is semisimple. ThenM=Soc(M ) is semisimple as a homomorphic
image of semisimple moduleM=Rad(M ). By [7, Proposition 2.1(c)], M has a decomposi-
tion M = M 1 � M 2 whereM 1 is semisimple andSoc(M ) is essential inM 2. HenceM 1 = 0 ,
and soSoc(M ) is essential inM . Thus M is �nitely cogenerated due to [1, Theorem 10.4].
(3) ) (4) By a similar discussion in the proof of (3) ) (1), [13, Corollary 1.11] implies
M=Rad(M ) is Artinian, and so is M=Soc(M ). Since both ofSoc(M ) and M=Soc(M ) are
Artinian, M is also Artinian.
(4) ) (3) Obvious. �

Corollary 2.25. Let R be a right Noetherian ring andM a CD-module with �nite hollow
dimension. Then the following are equivalent.

(1) M is �nitely cogenerated;
(2) Soc(M ) is essential in M .

Proof. (1) ) (2) It is known by [ 1, Theorem 10.4].
(2) ) (1) Since M is a CD-module with �nite hollow dimension, M is �nitely generated
by Theorem 2.23. The ring R being right Noetherian implies that Soc(M ) is also �nitely
generated. Therefore [1, Proposition 10.7] completes the proof. �

Proposition 2.26. Let R be a commutative domain. Then the following are equivalent.

(1) R is CD;
(2) Every cosingular R-module is projective;
(3) R is a �eld.

Proof. (1) ) (2) Let R be a CD commutative domain. It is well-known that RR is a
small R-module. So, by Proposition 2.11(1), R is semisimple. Then everyR-module is
projective, so (2) holds.
(2) ) (3) Let I � R. Then R=I is cosingular sinceR is small and homomorphic images
of small modules are small. By (2),R=I is projective, therefore I is a direct summand of
R. HenceR is simple and so a �eld.
(3) ) (1) Clear. �
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Proposition 2.27. Let R be a ring such that the class of cosingularR-modules is closed
under factor modules. Then the following statements are equivalent.

(1) R is right CD;
(2) Every cosingular R-module is semisimple;
(3) The ring R=Z (RR ) is semisimple.

Proof. (1) , (2) It follows from Corollary 2.6.
(2) , (3) This follows from [16, Proposition 2.1(2)] and the fact that R=Z (RR ) is a
cosingular R-module. �

Proposition 2.28. Let R be a ring such that every cosingularR-module is semisimple.
If for every R-module M , Z (M ) � � M , then every cosingularR-module is projective.

Proof. Let N be an R-module. Then N = Z (N ) � T, where Z (N ) is non-cosingular
and L is cosingular and hence semisimple. We show that every cosingularR-module is
projective. Let M be a cosingularR-module and f : N �! M an epimorphism with N
a free module. Now, f (Z (N )) � Z (M ) = 0 . Hence Z (N ) � Kerf . It follows that
Kerf = Z (N ) � (T \ Kerf ). Since T is semisimple, T = ( T \ Kerf ) � S for some
submoduleS of T. It is easy to check that N = Kerf � S. Therefore M is projective. �

Corollary 2.29. Every cosingular R-module is projective in each of the following cases:
(1) R is a right CD-ring such that the class of cosingularR-modules is closed under

factor modules and for everyR-module M , Z (M ) � � M .
(2) Every R-module is a direct sum of a non-cosingularR-module and a semisimple

R-module. (Clearly in this caseR is also right CD).

Proof. (1) It follows from Corollary 2.6 and Proposition 2.28.
(2) By [15, Corollary 3.9]. �

3. Applications to some classes of modules and rings

In this section, we study the CD-property for some classes of modules and rings, and
present some examples. We show that for a semilocal ring, being a rightCD-ring implies
being a left CD-ring. By a similar argument to [16, Corollary 2.7], for a semilocal ringR,
we haveZ (RR ) = Soc(RR) and Z (RR) = Soc(RR ).

Lemma 3.1. Let R be a semilocal ring. Then there exists a decompositionR = R1 � R2
with R1 semisimple,J (R) essential inR2, R2=J(R) semisimple andSoc(RR ) � R1� J (R).
If J (R) � Soc(RR ), then Soc(RR ) = R1 � J (R).

Proof. By [7, Theorem 3.5], R has a decompositionR = R1 � R2 with R1 semisimple,
J (R) essential in R2 and R2=J(R) semisimple. J (R) being essential inR2 implies that
Soc(RR ) � R1 � J (R). If J (R) � Soc(RR ), then clearly, R1 � J (R) � Soc(RR ). �

The following result introduces a large class of two-sidedCD-rings. It is known by
Corollary 2.11 that if a ring R is right CD, then J (R) � Soc(RR ), and soJ (R)2 = 0 . The
next result also exhibits that the converse of this statement holds for semilocal rings.

Proposition 3.2. Let R be a semilocal ring with J (R) � Soc(RR ) (resp., J (R) �
Soc(RR)). Then R is left (resp., right) CD. In particular, every semilocal ring with
J (R)2 = 0 is left and right CD.

Proof. Let R be a semilocal ring with J (R) � Soc(RR ). It follows that R
Soc(RR ) = R

Z (R R)

is semisimple, since R
Z (R R)

is a homomorphic image ofR=J(R). Hence every cosingular

left R-module is semisimple by [16, Proposition 2.1(2)] and therefore R is left CD. To
prove the last part, let R be semilocal with J (R)2 = 0 . By [16, Proposition 2.6 and
Corollary 2.7], Soc(RR) = Ann r (J (R)) and Soc(RR ) = Ann l (J (R)) . SinceJ (R)2 = 0 , we
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have J (R) � Soc(RR) and J (R) � Soc(RR ). Hence by the �rst part, R is left and right
CD. �

We now present a right (left) cosingular semilocal ring which is not right (left) CD.

Example 3.3. Let D be a commutative local integral domain with �eld of fractions Q
(for example, we might take D the localization of the integersZ by a prime number p, i.e.,
D is the subring of the �eld of rational numbers consisting of fractions a=bsuch that b is

not divisible by p). Let R =
�

D Q
0 Q

�
. The operations are given by the ordinary matrix

operations. SinceD is local it has a unique maximal ideal, saym and the Jacobson

radical of R is J (R) =
�

m Q
0 0

�
. Then R=J(R) �= (D=m) � Q. Thus R is semilocal. On

the other hand, if we suppose thatD has zero socle, thenR has zero left socle and so
Z (RR ) = Soc(RR) = 0 . Hence R is right cosingular. But R has non-zero right socle,

namely, Z (RR) = Soc(RR ) =
�

0 Q
0 Q

�
. It follows that R is right cosingular but not left

cosingular. SinceJ (R) * Soc(RR ) and J (R) * Soc(RR), R is neither right CD nor left
CD by Corollary 2.11.

The following example shows that the class ofCD-rings contains properly the class of
V -rings.

Example 3.4. Let F be a �eld and R =
�

F F
0 F

�
the ring of 2 � 2 upper triangular

matrices overF . It is well-known that R is a right and left ( SI ) GV -ring which is neither

a right nor a left V -ring because ofJ (R) =
�

0 F
0 0

�
. Since R is left and right Artinian

serial with J (R)2 = 0 , by Proposition 3.2, R is left and right CD.

Recall that a ring R is calledright Harada (a right H -ring for short) provided that every
injective right R-module is lifting. It is well-known that R is a right H -ring if and only if
every right R-module is decomposed to a small module and an injective module.

Proposition 3.5. Let R be a right CD right H -ring. Then R is an (left and right)
Artinian serial ring with J (R)2 = 0 .

Proof. Let R be a right CD right H -ring. By [3, 28.10], for everyR-module M , there
exists a direct decompositionM = S� E whereS is small andE is an injective R-module.
Since R is right CD, S is semisimple by Corollary 2.11(1). It follows that R is Artinian
serial with J (R)2 = 0 by [3, 29.10]. �

Remark 3.6. Note that a semilocal non-semisimple ring withSoc(RR) right semisimple
cannot have the property that all cosingular right R-modules and all cosingular leftR-
modules are projective. For if, assume thatR is a semilocal ring such that all cosingular
right R-modules and all cosingular leftR-modules are projective. ThenJ (R) � Soc(RR) =
Z (RR ) � � R. SinceJ (R) � R and Z (RR ) � � R, we haveJ (R) � Z (RR ). SinceZ (RR )
is a right semisimpleR-module, it follows that J (R) = 0 . HenceR is semisimple. The ring
R = Z

4Z is a localCD-ring but does not have the property that every cosingularR-module
is projective. Also R is not GV .

An R-moduleM is called anSI -moduleprovided that every M -singular R-module isM -
injective. A generalization of SI -rings is SC-rings. In [12], Sanh de�ned and investigated
SC-modules. An R-module M is called an SC-module if every M -singular R-module is
continuous. A ring R is a right SC-ring if the right R-module R is an SC-module, that is,
every singular right R-module is continuous. LeftSC-rings are de�ned similarly. SC-rings
generalizesSI -rings and SC-rings were introduced and studied by Rizvi and Yousif [11].
Note that every semiperfect right SI -ring is a right CD-ring by Proposition 2.18.
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Lemma 3.7 ([12, Corollary 8]). For a module M , the following conditions are equivalent.
(1) M is an SC-module with essential Soc(M );
(2) M=Soc(M ) is semisimple.

In what follows, we show that being a CD-ring is left-right symmetric for semilocal
rings.

Theorem 3.8. Let R be a semilocal ring. Then the following statements are equivalent.
(1) R is a left SC-ring with Soc(RR) essential as a left ideal inR;
(2) R is right CD;
(3) The ring R=Z (RR ) is semisimple;
(4) The ring R=Soc(RR) is semisimple.

If R satis�es one of these conditions, thenR is a left CD-ring.

Proof. (1) , (4) It follows from Lemma 3.7.
(3) , (4) It is clear from the fact that R is semilocal and soZ (RR ) = Soc(RR).
(2) ) (3) It is well-known that R=Z (RR ) is a subdirect product of small R-modules.
SinceR is right CD, all small right R-modules are semisimple by Corollary2.11 (1). Also
sinceR is semilocal, every direct product of semisimpleR-modules is semisimple. Hence
R=Z (RR ) is semisimple.
(3) ) (2) In this case every cosingular rightR-module is semisimple and every semisimple
module is discrete. ThereforeR is right CD.
For the last statement, sinceR is right CD, by Corollary 2.11(2), J (R)2 = 0 . So R is left
CD by Proposition 3.2. �

Corollary 3.9. Let R be a commutative semilocal ring. ThenR is CD if and only if R
is SC.

Proof. It follows from [ 11, Theorem 3.8] and Theorem3.8. �

Remark 3.10. Every non-trivial ideal of a local right CD-ring R (or a ring R with all
cosingular right R-modules projective) is semisimple. However,R need not be semisimple.
For instance, R = Z=4Z is a local CD-ring by Theorem 3.8, and its only non-trivial ideal
is simple andR is not semisimple.

Lemma 3.11. A ring R is left nonsingular, semilocal with R=Z (RR ) semisimple if and
only if R is semisimple.

Proof. One direction is clear. For the other direction, assume thatR is a semilocal, left
nonsingular ring with R=Z (RR ) semisimple. Then R=J(R) is semisimple. To complete
the proof we showJ (R) = 0 . For the semilocal ring R, R=Z (RR ) being semisimple implies
that R=Soc(RR) is semisimple. By [7, Proposition 2.1(c)], Soc(RR) is essential inR as a
left ideal and so J (R) is singular as a leftR-module. By assumption, J (R) = 0 . Thus R
is semisimple. �

The following example shows that a right CD-ring need not beSI or GV or have the
property that every cosingular R-module is projective.

Example 3.12. Let p and q be two distinct prime numbers. Then for m; n 2 f 0; 1; 2g,
the ring R = Z

pm qn Z is a CD-ring but does not have the property that every cosingular
R-module is projective (m and n cannot both be zero and also cannot both be one).

Proof. It is clear that R is semilocal. Letm = 2 and n = 1 . Then Soc(R) = pqZ
p2qZ + p2Z

p2qZ .

Since j Soc(R) j= pq, we have R
Z (R)

= R
Soc(R) is a �eld. Now by Theorem 3.8, R is SC

and CD. Let I 1, I 2 and I 3 be non-trivial ideals of R with j I 1 j= p, j I 2 j= p2 and
j I 3 j= pq. We also haveZ (R) = Soc(R) = I 3. SinceSoc(I 2) 6= 0 , it follows that Z (R) is
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not a direct summand of R. Therefore, every cosingularR-module is not projective (see
Remark 3.6). Now, let m = 2 and n = 2 . Suppose that I 1; : : : ; I 7 be non-trivial ideals
of R such that j I 1 j= p, j I 2 = q, j I 3 j= pq, j I 4 j= p2q, j I 5 j= pq2, j I 6 j= p2 and
j I 7 j= q2. Then Soc(R) = Z (R) = I 1 + I 2 = I 3, which implies j R

Z (R)
j= pq, hence it is

semisimple. It is not hard to verify that Z (R) is not a direct summand ofR. So not every
cosingular R-module is projective. Similar arguments hold for the casem = 2 or n = 2 .
Since the rings as above are not semisimple, by Lemma3.11, R is not nonsingular. Now,
by [11, Lemma 3.1] R is not SI . Also R is a perfect ring, so that R is not a GV -ring by
Proposition 2.18. We conclude that the class of cosingularR-modules is not closed under
homomorphic images. �

Recall that for a module M , Z 2(M ) is de�ned as Z (Z (M )) .

De�nition 3.13. A module M is called Z 2-torsionfree in caseZ 2(M ) = 0 .

It is easy to see that every cosingular module isZ 2-torsionfree. The class ofZ 2-
torsionfree modules is closed under submodules, direct sums and direct products (see
[15, Proposition 2.1]). By [8, Theorem 4.41] and [15, Proposition 2.1 and Theorem 3.5],
it also follows that for a perfect ring R, the class ofZ 2-torsionfree R-modules is closed
under factor modules.

Theorem 3.14. Let R be a right perfect ring. Consider the following conditions.

(1) Every Z 2-torsionfree R-module is discrete;
(2) Every Z 2-torsionfree R-module is quasi-discrete;
(3) Every Z 2-torsionfree R-module is semisimple;
(4) R is right CD.

Then (1) ) (2) ) (3) ) (4). If R is right GV , then (4) ) (1).

Proof. (1) ) (2) Clear by de�nitions.
(2) ) (3) Let M = yR be a cyclic Z 2-torsionfree R-module and x 2 yR. Let K be
a maximal submodule of xR. Since R is right perfect and yR is Z 2-torsionfree, xR=K
is Z 2-torsionfree. SoxR=K � xR is Z 2-torsionfree. Now, by assumption,xR=K � xR is
quasi-discrete and hence satis�es(D0)-condition by [8, Lemma 4.23]. It follows that xR=K
is xR-projective. This implies that K � � xR. Hence,xR and �nally yR are semisimple.
It follows that every Z 2-torsionfree R-module is semisimple.
(3) ) (4) By the fact that every cosingular module is Z 2-torsionfree, (3) implies that
every cosingularR-module is semisimple. ThusR is right CD.
Assume now that R is right GV . (4) ) (1) Let R be a right CD ring. Since R is
right perfect, every cosingular R-module is projective by Proposition 2.18. Let M be a
Z 2-torsionfree R-module. Then Z (M ) is cosingular. SinceM=Z (M ) is cosingular, it is
projective, and so Z (M ) is a direct summand of M . Hence M = Z (M ) � N for some
cosingular N . It follows that Z (M ) = 0 , i.e., M is cosingular. The assumption of(4) now
shows that M is discrete. �

Let R be a ring such that every cyclic cosingularR-module is discrete. ThenR need
not be a CD-ring as the following example shows.

Example 3.15. The ring R = Z8 is a local ring such that R
Z (R)

= R
Soc(R) is not semisimple.

So by Theorem3.8, R is not a CD-ring. Let M be a nonzero cyclicR-module. Then M
is isomorphic to M 1 = R

(2) = R
J (R) or M 2 = R

(4) = R
Soc(R) or M 3 = R. The module M 1 is

simple. The moduleM 2 is an indecomposable localR-module and M 3 is discrete sinceR
is semiperfect. Hence all cyclic (cosingular)R-modules are discrete.
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Abstract
The Tutte polynomial of a graph is a polynomial in two variables de�ned for every simple
graph contains information about how the graph is connected. We prove some formulas
for computing Tutte polynomial of bicyclic and tricyclic graph and �nally classify tricyclic
graph with respect to Tutte polynomial.
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1. Introduction

Let G be a simple graph. The vertexv is reachable from another vertexu if there is
a path in G connecting u and v. In this case we write v�u . A single vertex is a path of
length zero and so� is re�exive. Moreover, we can easily prove that� is symmetric and
transitive. So � is an equivalence relation onV(G). The equivalence classes of� is called
the connected components ofG. A unicycle graph has only one cycle. An induced cycle
means a cycle which is not contained another cycle as subgraph. A bicyclic graph and
tricyclic graph mean, a graph contains two or three induced cycles, respectively. A bridge
is an edge whose removal will cause the number of connected components to increase and
a loop is an edge whose endpoints are the same vertex.
The Tutte polynomial of a graph G, T(G; x; y) de�ned by Tutte and Whitney is a poly-
nomial in two variables de�ned for every simple graph contains information about how
the graph is connected [1,2,6,8� 11]. To de�ne this concept, we need some notations. The
edge contraction G=uv of the graph G is a graph is obtained by merging the verticesu
and v and removing the edgeuv. We write G � uv for the graph where the edgeuv is
merely removed, see Figure1. Then the Tutte polynomial of graph G is de�ned by the
recurrence relation between graphG, G � uv and G=uv as follows:

(i) If e is neither a loop nor a bridge edge, thenT(G; x; y) = T(G � e; x; y) +
T(G=e; x; y),

(ii) If e is a bridge edge, thenT(G; x; y) = xT (G � e; x; y),
(iii) If e is a loop edge, thenT(G; x; y) = yT(G � e; x; y).
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Figure 1. The Graph G, G-uv and G/uv.

If G contained i bridges andj loops andG0 is obtained by deleting of all bridges and loops
of graph G, then T(G; x; y) = x i yj T(G0; x; y). If G contains i bridges and j loops and no
other edges, thenT(G; x; y) = x i yj . In particular, T(G; x; y) = 1 if G contains no edges.

The importance of the Tutte polynomial T(G; x; y) comes from the algebraic graph
theory as a generalization of counting problems dependent to graph coloring. It is also
the source of several central computational problems in theoretical computer science. We
note T(G; x; y) = T(G) brie�y. In this paper we study on the Tutte polynomial of bicyclic
and tricyclic graphs. In [3� 5, 7]. We classify bicyclic and tricyclic graph with respect to
their Tutte polynomials. All over of this paper we assume that all graphs are simple.

2. Main results

In this section, at �rst we mention to the Tutte polynomial of special graph such as tree
and cycle. Then by using these results continue our argument for all class of bicyclic and
tricyclic graphs.

Lemma 2.1. Let Tn be a tree withn vertices. Then T(Tn ) = xn� 1.

Proof. The proof is straightforward by de�nition of Tutte polynomial. �

Lemma 2.2. Let Cn be a cycle oni vertices. Then T(Cn ) =
xn � x
x � 1

+ y.

Proof. Let e be an edge of cycleCn . By de�nition of Tutte polynomial, we have

T(Cn ) = T(Cn ) � e+ T(Cn=e)

= T(Pn ) + T(Cn� 1)

= xn� 1 + T(Pn� 1) + T(Cn� 2)
...

= xn� 1 + xn� 2 + � � � + x4 + T(C3)

= xn� 1 + xn� 2 + � � � + x4 + x3 + x2 + x + y

=
xn � x
x � 1

+ y:

�
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Remark 2.3. We note that in this paper C1 means a loop, thenT(C1) = y. Also C2 means
a graph with two vertices and double edge between these vertices and it is easy to see that
C2 � e is a single edge andC2=e is a loop. HenceT(C2) = T(C2 � e) + T(C2=e) = x + y.

Theorem 2.4. Let G be a connected graph witht disjoint cycles of sizen1; n2; � � � ; nt .
Then the Tutte polynomial of G is

T(G) = xb(G)
tY

i =1

� xn i � x
x � 1

+ y
�

where b(G) is the number of bridges ofG.

Proof. We begin by deleting the bridges of the graphG. SupposeB = f e1; e2; � � � ; eb(G)g
is the set of all bridges ofG. Then we have:

T(G) = xT (G � f e1g) = x2T(G � f e1; e2g) = � � � = xb(G)T(G � f e1; e2; � � � ; eb(G)g):

Since all the cycles of the graphG � f e1; e2; � � � ; eb(G)g are disjoint, then by a well-known

result we can conclude that T(G � f e1; e2; � � � ; eb(G)g) =
Q t

i =1

� xn i � x
x � 1

+ y
�

and then

T(G) = xb(G) Q t
i =1

� xn i � x
x � 1

+ y
�
, which completes the proof. �

Example 2.5. Let G be a graph with three disjoint cycles,Cm , Cn and Cl . All cases of
position of cycles are shown in Figure2. Then the Tutte polynomial of G is obtained as,
T(G) = xb(G)T(Cm )T(Cn )T(Cl ).

Figure 2. Di�erent positions of cycles in the class of tricyclic graph with disjoint
cycles.

Theorem 2.6. Let G be a graph with two induced cycles,Cm and Cn , with a common
path Pt . Then, the Tutte polynomial of G is obtained as follows:

T(G) = xb(G)
�
T(Cm� t+1 )T(Cn� t+1 ) +

x t � 1 � x
x � 1

T(Cm+ n� 2t+2 )
�
:

Proof. By Theorem 2.4., one can see that ifH is a graph, constructed by deleting
bridges of G then T(G) = xb(G)T(H ). The graph H is a graph constructed by two
induced cycles,Cm and Cn , such that they have a path Pt in common, see Figure3.
Let Pt : v1e1v2e2 � � � vt � 1et � 1vt be common path betweenCm and Cn . Then we have
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Figure 3. Graph H with two induced cycles, Cm and Cn .

T(H ) = T(H=e1) + T(H � e1). Since H � e1 is a unicycle graph, then T(H � e1) =
x t � 2H (Cm+ n� 2t+2 ): By continuing this process, we have

T(H ) = T(H=e1=e2) + T(H=e1 � e2) + T(H � e1)

= T(H=e1=e2=e3) + T(H=e1=e2 � e3) + T(H=e1 � e2) + T(H � e1)
...

= T(H=e1=e2=� � � =et � 1) + T(H=e1=e2=� � � =et � 2 � et � 1)

+ T(H=e1=e2=� � � =et � 3 � et � 2) + � � � + T(H=e1 � e2) + T(H � e1)

= T(Cm� t+1 )T(Cn� t+1 ) + T(Cm+ n� 2t+2 )

+ xT (Cm+ n� 2t+2 ) + � � � + x t � 2T(Cm+ n� 2t+2 )

= T(Cm� t+1 )T(Cn� t+1 ) +
x t � 1 � 1

x � 1
T(Cm+ n� 2t+2 ):

SinceT(G) = xb(G)T(H ), then

T(G) = xb(G)
�
T(Cm� t+1 )T(Cn� t+1 ) +

x t � 1 � 1
x � 1

T(Cm+ n� 2t+2 )
�
;

and the proof is completed. �

Notation . Let G be a graph which instructed with two induced cycles,Cm and Cn ,
such that they have a path Pt in common. We denote this graph byG = G(Cm ; Cn ; Pt ).
By this notation, in Theorem 2.6, we have T(G) = xb(G)T(G(Cm ; Cn ; Pt )) .

Corollary 2.7. Let G be a tricyclic graph with two non-disjoint cyclesCm , Cn , with a path
Pt in common, and a disjoint cycle Cl , all cases of position of cycles are shown in Figure
4. The strict formula for Tutte polynomial of G is T(G) = xb(G)T(G(Cm ; Cn ; Pt ))T(Cl ).

Theorem 2.8. Let G be a graph with three induced cycles,Cm , Cn and Cl , such that Cm
and Cn have a pathPs in common, Cn and Cl have a pathPr in common and Cl and Cm
have a pathPt in common. Then, the Tutte polynomial of G is obtained as follows:

T(G) = xb(G)
�
T(Cm� s� t+2 )T(G(Cl � t+1 ; Cn� s+1 ; Pr ))

+
x t � 1 � 1

x � 1
T(G(Cn� s+1 ; Cm+ l� 2t � s+3 ; Pt ))

+
xs� 1 � 1

x � 1
T(G(Cl ; Cm+ n� 2s+2 ; Pr + t � 1))

�
:
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Figure 4. All positions of cycles of tricyclic graphs with two non-disjoint cycles
and one disjoint cycle.

Proof. By well known result in Theorem 2.4., if G has b(G) bridge and H obtained by
deleting bridges ofG, then T(G) = xb(G)T(H ). SeeH in Figure 5.
Let Ps : v1e1v2e2 � � � vs� 1es� 1vs be common path betweenCm and Cn . Then

T(H ) = T(H=e1=e2) + T(H=e1 � e2) + T(H � e1)

= T(H=e1=e2=e3) + T(H=e1=e2 � e3) + T(H=e1 � e2) + T(H � e1)
...

= T(H=e1=e2=� � � =es� 1) + T(H=e1=e2=� � � =es� 2 � es� 1)

+ T(H=e1=e2=� � � =es� 3 � es� 2)
...

+ T(H=e1=e2 � e3) + T(H=e1 � e2) + T(H � e1):

For each 1 � i � s � 2, we have

T(H=e1=e2=� � � =ei � ei +1 ) = xs� i � 2T(G(Cl ; Cm+ n� 2s+2 ; Pr + t � 1)) :

Moreover T(H � e1) = xs� 2T(G(Cl ; Cm+ n� 2s+2 ; Pr + t � 1)) and setK = H=e1=e2=� � � =es� 1.
Hence

T(H ) = T(K ) +
s� 2X

i =0

xs� i � 2T(G(Cl ; Cm+ n� 2s+2 ; Pr + t � 1)) :
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Figure 5. The Graph H.

On the other hands if Pt : w1e0
1w2e0

2wt � 1e0
t � 1wt be common path betweenCm and Cl ,

then

T(K ) = T(K=e0
1=e0

2=� � � =e0
t � 1) + T(K=e0

1=e0
2=� � � =e0

t � 2 � e0
t � 1)

+ T(K=e0
1=e0

2=� � � =e0
t � 3 � e0

t � 2)
...

+ T(K=e0
1=e0

2 � e0
3) + T(K=e0

1 � e0
2) + T(K � e0

1):

We have T(K=e0
1=e0

2=� � � =e0
i � e0

i +1 ) = x t � i � 2T(G(Cn� s+1 ; Cm+ l� 2t � s+3 ; Pr )) and
T(K � e0

1) = x t � 2T(G(Cn� s+1 ; Cm+ l� 2t � s+3 ; Pr )) for each 1 � i � t � 2.
Set L = K=e0

1=e0
2=� � � =e0

t � 1, then T(L) = T(Cm� s� t+2 )T(G(Cl � t+1 ; Cn� s+1 ; Pr )) .
By the above argument, we conclude that

T(G) = xb(G)
�
T(K ; x; y) +

s� 2X

i =0

xs� i � 2T(G(Cl ; Cm+ n� 2s+2 ; Pr + t � 1))
�

= xb(G)
�
T(L ; x; y) +

t � 2X

i =0

x t � i � 2T(G(Cn� s+1 ; Cm+ l� 2t � s+3 ; Pt ))

+
s� 2X

i =0

xs� i � 2T(G(Cl ; Cm+ n� 2s+2 ; Pr + t � 1))
�

= xb(G)
�
T(Cm� s� t+2 )T(G(Cl � t+1 ; Cn� s+1 ; Pr ))

+
x t � 1 � 1

x � 1
T(G(Cn� s+1 ; Cm+ l� 2t � s+3 ; Pt ))

+
xs� 1 � 1

x � 1
T(G(Cl ; Cm+ n� 2s+2 ; Pr + t � 1)

�
:

�

Theorem 2.9. Let G be a graph with three induced cycles,Cm , Cn and Cl , such that Cm
and Cn have a pathPs in common, Cn and Cl have a pathPr in common, see Figure6.
Then, the Tutte polynomial of G is obtained as follows:

T(G) = xb(G)
�
T(Cs� 1)T(G(Cn� s+1 ; Cl ; Pr )) +

xm� s+1 � 1
x � 1

T(G(Cn ; Cl ; Pr ))
�
;
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Figure 6. All positions of cycles of tricyclic graphs with conditions of Theorem 2.9.

where

T(Cs� 1) =

8
<

:

y s = 2

x + y s = 3 :

Proof. By similar reason of Theorem 2.8., one can see thatT(G) = xb(G)T(H ), without
loosing generality assume thatH is a graph like Figure 7(a).
Suppose thatCm : v1; v2; � � � ; vm� s+2 = us; us� 1; � � � ; u1 = v1 and for 1 � i � m � s + 1 ,
put ei = vi vi +1 .

Figure 7. (a) The graph H, (b) The graph K.

SinceT(H ) = T(H � e1)+ T(H=e1), then by deleting eachei = vi vi +1 , remaining graph
is a subgraph ofH contains two induced cycleCn and Cl with a common path Pr . By
using Theorem 4, we can obtain Tutte polynomial ofH as follows:

T(G) = T(H � e1) + T(H=e1)

= T(H=e1=e2) + T(H=e1 � e2) + T(H � e1)

= T(H=e1=e2=e3) + T(H=e1=e2 � e3) + T(H=e1 � e2) + T(H � e1)
...

= T(H=e1=e2=� � � =em� s+1 ) + T(H=e1=e2=� � � =em� s � em� s+1 )

+ T(H=e1=e2=� � � =em� s� 1 � em� s)
...

+ T(H=e1=e2 � e3) + T(H=e1 � e2) + T(H � e1):

For each 1 � i � m � s, T(H=e1=e2=e3=� � � =ei � ei +1 ) = xm� s� i T(G(Cn ; Cl ; Pr )) and
T(H=e1) = xm� sT(G(Cn ; Cl ; Pr )) . Set K = T(H=e1=e2=� � � =em� s+1 ), see Figure7(b).



1656 Z. Yarahmadi, S. Mir

On the other hand, T(K ) = T(Cs� 1)T(G(Cn� s+1 ; Cl ; Pr )) . Hence, by above argument,
one can see that:

T(H ) = T(Cs� 1)T(G(Cn� s+1 ; Cl ; Pr )) +
m� sX

i =1

xm� s� i T(G(Cn ; Cl ; Pr )) + xm� sT(G(Cn ; Cl ; Pr ))

= T(Cs� 1)T(G(Cn� s+1 ; Cl ; Pr )) +
xm� s+1 � 1

x � 1
T(G(Cn ; Cl ; Pr ))

and this completes the proof. �

Theorem 2.10. Let G be a graph with three induced cycles,Cm , Cn and Cl , such that Cl
and Cn have a pathPt in common and the pathPs is common between three cyclesCm ,
Cn and Cl , Figure 8. Then, the Tutte polynomial of G is obtained as follows:

T(G) = xb(G)
�
T(Cs� 1)T(G(Cn� s+1 ; Cl � s+1 ; Pt � s+1 )) +

xm� s+1 � 1
x � 1

T(G(Cn ; Cl ; Pt ))
�
;

Figure 8. All positions of cycles of tricyclic graphs with conditions of Theorem 2.10.

Proof. By similar way of Theorem 2.8 and 2.9,T(G) = xb(G)T(H ). Without loosing of
generality H is shown in Figure 9(a).
Suppose thatCm : v1; v2; � � � ; vm� s+2 = us; us� 1; � � � ; u1 = v1 and for 1 � i � m � s + 1 ,
put ei = vi vi +1 .

Figure 9. (a) The Graph H, (b) The Graph K.

SinceT(H ) = T(H � e1)+ T(H=e1), then by deleting eachei = vi vi +1 , remaining graph
is a subgraph ofH contains two induced cycleCn and Cl with a common path Pr . By
using Theorem 2.6., we can obtain Tutte polynomial ofH as follows:

T(H ) = T(H=e1=e2=e3=� � � =em� s+1 ) +
m� sX

i =1

T(H=e1=e2=e3=� � � =ei � ei +1 ) + T(H � e1):

For each 1 � i � m � s, T(H=e1=e2=e3=� � � =ei � ei +1 ) = xm� s� i T(G(Cn ; Cl ; Pr )) and
T(H=e1) = xm� sT(G(Cn ; Cl ; Pr )) . Set K = T(H=e1=e2=� � � =em� s+1 ), see Figure 9(b). It
is easy to see that,T(K ) = T(Cs� 1)T(G(Cn� s+1 ; Cl � s+1 ; Pt � s+1 )) .
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Hence, by above argument, one can see that:

T(H ) = T(Cs� 1)T(G(Cn� s+1 ; Cl � s+1 ; Pt � s+1 )) +
m� sX

i =0

xm� s� i T(G(Cn ; Cl ; Pt ))

= T(Cs� 1)T(G(Cn� s+1 ; Cl � s+1 ; Pt � s+1 )) +
xm� s+1 � 1

x � 1
T(G(Cn ; Cl ; Pt )) :

This completes the proof. �

3. Conclusion remarks

In this paper some strict formulas of bicyclic and tricyclic graphs are obtained. We
also characterize di�erent classes of bicyclic and tricyclic graph by Tutte polynomial. We
classify bicyclic graphs in to two di�erent classes and tricyclic graphs in �ve di�erent
classes with respect to Tutte polynomial and collect all results in Figures 10-13.

Figure 10. (a) First class of bicyclic graph with the same Tutte polynomial,
(b) Second class of bicyclic graph with respect to Tutte polynomial.

Figure 11. (a) First class of tricyclic graph with the same Tutte polynomial, (b)
Second class of tricyclic graph with the same Tutte polynomial.
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Figure 12. (a) Third class of tricyclic graph with respect to Tutte polynomial,
(b) Forth class of tricyclic graph with respect to Tutte polynomial.

Figure 13. Fifth class of tricyclic graph with respect to Tutte polynomial.

References

[1] J.M. Burgos, Singularities in Negamis splitting formula for the Tutte polynomial,
Discrete Appl. Math. 237, 65-74, 2018.

[2] H.H. Crapo, The Tutte polynomial, Aequationes Math. 3 (3), 211-229, 1969.
[3] H. Deng, S. Chen and J. Zhang,The Merri�eld-Simmons index in(n, n+1)-graphs ,

J. Math. Chem. 43, 75-91, 2008.
[4] A. Dolati, M. Haghighat, S. Golalizadeh and M. Safari, The smallest Hosoya index

of con-nected tricyclic graphs, MATCH Commun. Math. Comput. Chem. 65, 57-70,
2011.



A classi�cation for bicyclic and tricyclic graphs ... 1659

[5] S. Li and Z. Zhu, Sharp lower bound for total number of matching of tricyclic graphs,
Electron. J. Comb. 17, 15 pages, 2010.

[6] S. Ok and T.J. Perrett, Density of real zeros of the Tutte polynomial, Electron. J.
Discrete Math. 61, 941-946, 2017.

[7] Y.M. Tong, J.B. Liu, Z.Z. Jiang and N.N. Lv, Extreme values of the �rst general
Zagreb index in tricyclic graphs, J. Hefei Univ. Nat. Sci. 1, 4-7, 2010.

[8] W.T. Tutte, A contribution to the theory chromatic polynomials, Canad. J .Math. 6,
80-91, 1953.

[9] W.T. Tutte, On dichromatic polynomials, J. Combin. Theory 2, 301-320, 1967.
[10] W.T. Tutte, On chromatic polynomials and the golden ratio, J. Combin. Theory 9,

289-296, 1970.
[11] W.T. Tutte, Graph-polynomials, Adv. Appl. Math. 32, 5-9, 2004.



Hacettepe Journal of

Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 49 (5) (2020), 1660 � 1666

DOI : 10.15672/hujms.701857

Research Article

On the commutativity conditions for rings and
� -rings

Hatice Kandamar�B, Okan Arslan*�B

Department of Mathematics, Adnan Menderes University, Ayd�n, Turkey

Abstract

Let R be any ring. In this paper we observe the relation between the center ofR-ring R
and the center of usual ringR and then prove if the center of R-ring R is nonzero, then
R is commutative as a ring. We also show that the common hypothesis

a�b�c = a�b�c for all a; b; c2 M and �; � 2 �

for a weak Nobusawa� -ring M is su�cent for M to be commutative. Also, we investigate
some conditions on ideals of� -ring that make M to be commutative.
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1. Introduction and preliminaries

The notion of a gamma ring introduced by Nobusawa as a ternary algebraic system
in 1964. After the de�nition of a gamma ring that has been given by Barnes in 1966 by
weakened Nobusawa's de�nition, many algebraists focused on the study of gamma rings.

Prime and semiprime ideals for gamma rings was �rstly introduced by Barnes [1] in
1966 and by Kyuno [5] in 1975 respectively. They proved the main structural properties
of primeness and semiprimeness.

Commutativity conditions for usual rings are one of the common topic that the math-
ematicians work and there have been obtained a number of theorems to determine the
conditions for a prime ring (or semiprime ring) to be commutative. Analogous to usual
rings, commutativity conditions for � -rings are important and there have been many re-
sults concerning conditions that force a� -ring to be commutative. When we look at some
of the papers investigating commutativity conditions for � -rings we come across the below
assumption:

a�b�c = a�b�c for all a; b; c2 M and �; � 2 � (* )

There are gamma rings that satisfy the assumption (* ). For example, let M is the set of

all 2 � 3 matrices of the form
�
a 0 b
0 c 0

�
and � is the set of all 3 � 2 matrices of the form
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Received: 08.10.2017; Accepted: 08.12.2019
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2

4
0 0
0 y
0 0

3

5 for a; b; c; y 2 Z. Then, it is easy to show that M is a prime Nobusawa� -ring

which satis�es (* ).
Let M be a � -ring in the sense of Barnes,a; b 2 M and � 2 � . The commutator of a

and bwith respect to � is equal toa�b � b�a and denoted by[a; b]� . The basic commutator
identity for a � -ring M is

[a�b; c ]� = a� [b; c]� + [ a; c]� �b + a�c�b � a�c�b

for a; b; c2 M and �; � 2 � . With the assumption ( * ), this identity reduces to

[a�b; c ]� = a� [b; c]� + [ a; c]� �b

for a; b; c 2 M and �; � 2 � . Under the assumption (* ), the basic commutator identity
for a � -ring M is almost same as the commutator identity for usual rings. Therefore, by
performing minor modi�cations to any proof for a usual ring, one can easily get results
for gamma rings. This is the main reason for assuming (*).

The assumption (* ) was �rst seen in the papers [3] and [4] which have many results about
the center of a gamma ring. However, it is so strong that without any other assumption it
makes any prime weak Nobusawa� -ring M commutative which means the center ofM is
equal to the M . Therefore, investigating commutativity conditions under the assumption
(* ) is not necessary for prime weak Nobusawa� -rings. Moreover, obtaining M to be a
Nobusawa � 0-ring from a Barnes � -ring M and primeness ofM being hereditary tell us
that one have to be careful when investigating commutativity conditions in prime Barnes
� -rings with the assumption (* ).

The main interest of this paper is to investigate commutativity conditions for gamma
rings and to observe relation between commutativity of a gamma ring and commutativity
of a usual ring. We show that the center of a prime� -ring M in the sense of Nobusawa
is either zero orM . Then, observing the relation between the center ofR-ring R and the
center of the ring R, we prove if the center ofR-ring R is nonzero, thenR is commutative
as a ring. In the last part, we investigate some conditions on ideals of� -ring that make
M commutative.

Now we give some de�nitions and basic facts about gamma rings.
Let M and � be additive Abelian groups. M is said to be a � -ring in the sense of

Barnes [1] and denoted by(� ; M )B if there exists a mappingM � � � M ! M satisfying
these two conditions for all a; b; c2 M; �; � 2 � :

(1) (a + b)�c = a�c + b�c
a(� + � )c = a�c + a�c
a� (b+ c) = a�b + a�c

(2) (a�b )�c = a� (b�c )

In addition, if there exists a mapping � � M � � ! � such that the following axioms hold
for all a; b; c2 M; �; � 2 � :

(3) (a�b )�c = a(�b� )c
(4) a�b = 0 for all a; b2 M implies � = 0 where � 2 �

then M is called a� -ring in the sense of Nobusawa [7] and denoted by(� ; M )N . If a � -ring
M in the sense of Barnes satis�es only the condition (3), then it is called weak Nobusawa
� -ring [6] and denoted by (� ; M )wN .

Let M be a � -ring in the sense of Barnes. A subgroupU of M is called left ideal(resp.
right ideal) if M � U � U (resp. U� M � U). If U is both left and right ideal, the U is
called an ideal ofM . An ideal 
 of M -ring � is de�ned similarly. Recall that an ideal P
of M is called prime ideal if a� M � b � P for a; b 2 M implies a 2 P or b 2 P. An ideal
Q of M is called semiprime ideal ifa� M � a � Q for a 2 M implies a 2 Q. M is said to
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be a prime (resp. semiprime)� -ring if the zero ideal of M is prime (resp. semiprime).
An ideal S of M is called completely prime ideal if a� b � S for a; b 2 M implies a 2 S
or b 2 S. M is said to be completely prime� -ring if the zero ideal of M is completely
prime. Clearly, every completely prime � -ring is prime. For a � -ring M in the sense of
Nobusawa, the primeness and completely primeness are equivalent.

Let M be a � -ring in the sense of Barnes,A be any subset ofM and 
 be any subset
of � . Then, the set C
 (A) = f x 2 M j x�a = a�x; 8a 2 A; � 2 
 g is called the 
 -center
of A and the set CA (
) = f  2 � j a� = �a; 8a 2 A; � 2 
 g is called the A-center of 
 .
These subsets are subgroups ofM and � respectively.

Lemma 1.1 ([6, 1.2.1]). If M is a � -ring in the sense of Nobusawa, then� is a weak
NobusawaM -ring.

Lemma 1.2 ([6, 1.2.2]). If M is a weak Nobusawa� -ring, then M is a � =� -ring in the
sense of Nobusawa where� = f  2 � : MM = 0g.

Lemma 1.3 ([2]). Every Barnes � -ring M is a � 0-ring in the sense of Nobusawa for some
Abelian group � 0.

Proof. Let 
 is the free Abelian group generated by� � M � � and � is the subgroup
consisting of all elements

P

i
ni (x� i ai )� i y = 0 for every x; y 2 M . Now, de�ne � 0 as the

quotient group 
 =� and write [�; a; � ] for the coset(�; a; � )+� . Therefore, one can obtain
M to be � 0-ring in the sense of Nobusawa. Here, the ternary multiplications are de�ned
by

x(
X

i

[� i ; ai ; � i ])y =
X

i

(x� i ai )� i y

and

(
X

i

[� i ; ai ; � i ])x(
X

i

[ j ; bj ; � j ]) =
X

i;j

[� i ; (ai � i x) j bj ; � j ]

for all
P

i
[� i ; ai ; � i ] and

P

i
[ j ; bj ; � j ] in � 0 and x; y 2 M . �

Remark 1.4. According to the proof of Lemma 1.3, we haveA� 0B = A� M � B for any
subsetsA and B of M . Hence, it is clear that primeness is hereditary under the transition
of (� ; M )B to (� 0; M )N .

Lemma 1.5. M is a prime � -ring in the sense of Nobusawa if and only if� is a prime
NobusawaM -ring.

Proof. We only treat the case M is a prime � -ring in the sense of Nobusawa, the other
case can be treated similarly.

In the light of Lemma 1.1, it su�ces to show that the M -ring � is prime and �x� = 0
for all �; � 2 � implies x = 0 . First, assume that �x� = 0 for all �; � 2 � . Hence,
a�x�b = 0 for all a; b2 M and �; � 2 � . Hence, we getx = 0 sinceM is a prime � -ring.
Now let �M� = 0 for �; � 2 � . Therefore,

�M� = 0 ) (M�M )�( M�M ) = 0

) M�M = 0 _ M�M = 0

) � = 0 _ � = 0

since M is a prime Nobusawa� -ring. Consequently, � is a prime M -ring in the sense of
Nobusawa. �
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2. Commutativity of prime gamma rings and rings

Lemma 2.1. Let M be a prime Nobusawa� -ring. If a�b�c = a�b�c for all a; b; c2 M
and �; � 2 � , then (� ; M )N is commutative.

Proof. Since M is a prime � -ring in the sense of Nobusawa,� is a prime Nobusawa
M -ring by Lemma 1.5 and

a�b�c = a�b�c ) a(�b� � �b� )c = 0

) �b� � �b� = 0

for all a; b; c2 M and �; � 2 � . Thus, the prime M -ring � is commutative. Let x; y 2 M
and  2 � . Then,

� (xy � yx )� = �xy� � �yx� = �xy� � �x�y

= �xy� � �xy� = �xy� � �xy�

= 0

for all �; � 2 � , since � is commutative M -ring. Therefore, we get xy = yx for all
x; y 2 M and  2 � . Hence,M is a commutative � -ring. �

Theorem 2.2. Let M be a prime weak Nobusawa� -ring. If a�b�c = a�b�c for all
a; b; c2 M and �; � 2 � , then (� ; M )wN is commutative.

Proof. Since M is a weak Nobusawa� -ring, M is a Nobusawa� 0-ring by Lemma 1.3.
Then, � 0 is a prime NobusawaM -ring by Lemma 1.5. Sincea�b�c = a�b�c , we get

a[�; x; � ]b[� 0; x0; � 0]c = a[� 0; x0; � 0]b[�; x; � ]c

for all a; b; c; x; x0 2 M and �; �; � 0; � 0 2 � . Hence, by Lemma2.1 we have (� 0; M )N is
commutative that is, a[�b� ]c = c[�b� ]a for all a; b; c2 M and �; � 2 � . Let [; x; � ] and
[ 0; x0; � 0] in � 0, a; b2 M and � 2 � . It su�ces to show that the equation

[; x; � ] (a�b � b�a ) [ 0; x0; � 0] = [ ; x� (a�b � b�a )  0x0; � 0] = 0 � 0

holds.
Let u; v 2 M . Then we have,

ux� (a�b � b�a )  0x0� 0v = ( u (x� ) a�b )  0x0� 0v � ux�b�a 0x0� 0v

= ( bx�a ) �u 0x0� 0v � ux�b�a 0x0� 0v

= ( a (x� ) b�u )  0x0� 0v � ux�b�a 0x0� 0v

= ux�b�a 0x0� 0v � ux�b�a 0x0� 0v

= 0

for all u; v 2 M . Therefore, (; x� (a�b � b�a )  0x0; � 0) 2 � . Hence, we geta�b = b�a for
all a; b2 M . This shows that (� ; M )wN is commutative. �

Lemma 2.3. Let M be a prime Nobusawa� -ring and U be a nonzero ideal ofM . If
uv = 0 for all u; v 2 U, then  = 0 .

Proof. Since U� MM � U = 0 by hypothesis, it can be shown that  = 0 since U is a
nonzero ideal ofM and M is prime. �

Theorem 2.4. Let M be a� -ring in the sense of Nobusawa. Then,M is a commutative
� -ring if and only if � is a commutative M -ring where M and � both nonzero.

Proof. We only prove that if M is a commutative � -ring, then � is a commutative M -
ring. By Lemma 1.5, we have � is an M -ring in the sense of Nobusawa. Thus, we only
need to show the commutativity of the M -ring � .
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Suppose that M is a commutative � -ring. Therefore, [x; y]� = 0 for all x; y 2 M and
� 2 � . Replacing x by x�z for z 2 M and � 2 � , we get x[�; � ]yz = 0 for all x; y; z 2 M
and �; � 2 � . Hence,[�; � ]y = 0 for all y 2 M and �; � 2 � sinceM is a Nobusawa� -ring.
This implies that the M -ring � is commutative. �

Remark 2.5. From now on, in the light of the Lemma 1.5 and Theorem 2.4, the lemmas
and the theorems proved for a� -ring M are also valid for anM -ring � .

Lemma 2.6. Let M be a � -ring in the sense of Barnes andx be a nonzero element of
C� (M ). Then the equation,

x�y� [a�b; c] = x�y� (a� [b; c] + [ a; c] �b )

holds for all a; b; c; y2 M and �; �; ; � 2 � .

Proof. It su�ces to show that

x�y�a�cb � x�y�ac�b = 0

since

[a�b; c] = a� [b; c] + [ a; c] �b + a[�;  ]cb

for all a; b; c; y2 M and �; �; ; � 2 � . Thus,

x�y�a�cb = y�x�a�cb = y�a�x�cb

= y�a�c�xb = y�a�c�bx

= y�a�xc�b = y�x�ac�b

= x�y�ac�b

sincex 2 C� (M ). Therefore, we get the desired result. �

Corollary 2.7. Let M be a prime � -ring in the sense of Barnes andx be a nonzero
element ofC� (M ). Then the equations,

[a�b; c] = a� [b; c] + [ a; c] �b

[a; b�c] = �b [a; c] + [ a; b] �c

hold for all a; b; c2 M and �;  2 � .

Corollary 2.8. Let M be a prime � -ring in the sense of Nobusawa. Then the center of
M is either zero or M .

Proof. Let C� (M ) 6= 0 . Then, we have the equation

[a�b; c] = a� [b; c] + [ a; c] �b

by Corollary 2.7. This implies that a�cb = ac�b for all a; b; c 2 M and �;  2 � .
Therefore, by Lemma2.1, the center of M equals to M . �

Lemma 2.9. If R is a prime ring, then R is a prime R-ring in the sense of Nobusawa.

Proof. It is obvious that the ternary multiplications can be de�ned as the multiplication
of the ring R and therefore one can easily see thatR is a NobusawaR-ring. On the other
hand, the primeness of theR-ring R is clear since ofR is prime as a ring. �

Lemma 2.10. Let R be a prime ring. Then, CR (R) is contained in Z (R).

Proof. Let a 2 CR (R). Hence,axy � yxa = 0 for all x; y 2 R. Replacing y by yz in the
last equation yields,

y(xa � ax)z = 0

for all x; y; z 2 R. Thus, we havexa � ax = 0 for all x 2 R sinceR is an R-ring in the sense
of Nobusawa by Lemma2.9. This implies that a 2 Z (R). Therefore, CR (R) is contained
in Z (R). �
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Theorem 2.11. Let R be a prime ring with CR (R) 6= 0 . Then, R is commutative.

Proof. SinceR is a nonzero prime ring, we have a commutative and primeR-ring R by
Lemma 2.9 and Corollary 2.8. Therefore, [x; y]r = 0 for all x; y; r 2 R. By Lemma 2.10, we
have a nonzero elementc in Z (R). Replacingy by c in the last equation, we getc[x; r ] = 0
for all x; r 2 R sincec 2 Z (R). SinceR is prime, R is also commutative as a ring. �

Remark 2.12. Let R be a prime ring. According to the Theorem2.11, it is unnecessary
to investigate its commutativity conditions if it satis�es CR (R) 6= 0 .

Lemma 2.13. Let M be a prime � -ring in the sense of Nobusawa,U be a nonzero ideal
of M and 
 be a nonzero ideal of� .

(i) If x
 y = 0 for any x; y 2 M , then x = 0 or y = 0 .
(ii) If U� = 0 for any ; � 2 � , then  = 0 or � = 0 .

Proof. We only prove (i). The other case can be shown similarly.
Suppose that x
 y = 0 . Thus, x
 M = 0 or y = 0 since 
 is an ideal of � and M is

prime. Let x
 M = 0 . SinceM is prime and 
 is nonzero, we getx = 0 . �

Lemma 2.14. Let M be a prime � -ring in the sense of Nobusawa,U be a nonzero ideal
of M and 
 be a nonzero ideal of� . Then M is commutative if one of the following
conditions holds:

(i) CU (�) 6= 0
(ii) C� (U) 6= 0
(iii) C
 (M ) 6= 0
(iv) CM (
) 6= 0

Proof. Here we prove the theorem under the conditions (i) or (ii). The same proof could
be carried out under the other conditions.

(i) Suppose that  is a nonzero element ofCU (�) . So we haveu� � �u = 0 for all
u 2 U and � 2 � . Then,

u [�; � ]v = u�v� � u�v�

= �uv� � �u�v

= �u�v � �u�v

= 0

for all u; v 2 U and �; � 2 � . Hence, we get[�; � ]v = 0 for all v 2 U and �; � 2 �
by Lemma 2.13. Now let y 2 M . SinceU is an ideal of M , we have

u [�; � ]y = u�y� � u�y� = �u�y � �u�y

= �u�y � �u�y = �u�y � �u�y

= 0

for all u 2 U, y 2 M and �; � 2 � . Thus, we get [�; � ]y = 0 for all y 2 M and
�; � 2 � by Lemma 2.13. Therefore, we have the desired result by Theorem2.4.

(ii) Suppose thatx is a nonzero element ofC� (U). So we have[x; u] = 0 for all u 2 U
and  2 � . Therefore, the equation

[uv; x ]� = u [v; x]� + u[; � ]xv + [ u; x]� v

reduces tou[; � ]xv = 0 for all u; v 2 U and ; � 2 � . Hence, [; � ]x = 0 for all
; � 2 � by Lemma 2.3. Since[x; u�y ] = 0 by hypothesis, we getu� [x; y] = 0 for
all u 2 U, y 2 M and ; � 2 � . Thus, x 2 C� (M ) since M is a prime Nobusawa
� -ring. Therefore, M is � -commutative by Corollary 2.8.

�
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Theorem 2.15. Let M be a prime� -ring in the sense of Nobusawa,U be a nonzero ideal
of M and 
 be a nonzero ideal of� . Then M is commutative if one of the following
conditions holds:

(i) CU (
) 6= 0
(ii) C
 (U) 6= 0

Proof. Here we prove the theorem under the condition (i). The same proof could be
carried out under the other condition.

Suppose that is a nonzero element ofCU (
) . So we have[; � ]u = 0 for all u 2 U and
� 2 
 . Hence, the equation

[�u�;  ]v = �u [�;  ]v + � [u; v] � + [ �;  ]vu�

reduces to� [u; v] � = 0 for all u; v 2 U and �; � 2 
 . Therefore, [u; v] = 0 by Lemma
2.3. Then, we �nd

u [�; � ]v = u�v� � u�v� = �u�v � �uv�

= v�u� � �vu� = v�u� � v�u�

= 0

for all u; v 2 U, � 2 � and � 2 
 . This implies that [�; � ]v = 0 by Lemma 1.5 and
 6= 0 . Therefore, we get that the nonzero ideal
 of � is a subset ofCU (�) . Hence,M is
� -commutative by Lemma 2.14. �

Corollary 2.16. Let M be a prime � -ring in the sense of Nobusawa andU be a nonzero
ideal of M . If there exists a nonzero element of � such that [U; M ] = 0 , then M is
� -commutative.

Proof. Suppose that there exists a nonzero element of � such that [U; M ] = 0 . There-
fore, we havey[; � ]uz = 0 for all u 2 U, y; z 2 M and � 2 � since [u; y�z ] = 0 by
hypothesis. Thus, [; � ]u = 0 sinceM is a Nobusawa� -ring. This implies that CU (�) 6= 0 .
Hence,M is � -commutative by Lemma 2.14. �

Corollary 2.17. Let M be a prime � -ring in the sense of Nobusawa andU be a nonzero
ideal of M . If there exists a nonzero element of � such that [u; v] = 0 for all u; v 2 U,
then M is � -commutative.

Proof. By hypothesis, we havey[; � ]xz = 0 since [x; y�z ] = 0 for all x; y; z 2 U and
� 2 � . This implies that [; � ]x = 0 for all x 2 U and � 2 � by Lemma 2.3. Therefore,
CU (�) 6= 0 . Hence,M is � -commutative by Lemma 2.14. �
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Abstract
We prove the norm inequalities for potential operators and fractional integrals related to
generalized shift operator de�ned on spaces of homogeneous type. We show that these
operators are bounded fromH p

� �
to H q

� �
, for 1

q = 1
p � �

Q , provided 0 < � < 1
2 , and

� < � � 1 and Q
Q+ � < p � Q

Q+ � . By applying atomic-molecular decomposition ofH p
� �

Hardy space, we obtain the boundedness of homogeneous fractional type integrals which
extends the Stein-Weiss and Taibleson-Weiss's results for the boundedness of theBn -Riesz
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1. Introduction

The theory of Hardy spaces establish the important part of harmonic analysis. As we
know that the atomic-molecular decomposition of Hardy spaces make the singular integral
operators acting on this spaces very simple. Thus the decompositions of Hardy spaces are
very critical in harmonic analysis. Therefore, many problems in harmonic analysis have
natural formulations as questions of boundedness of singular integral operators de�ned on
this spaces or distributions.

As the development of singular integral operators, the fractional type operators and their
boundedness theory play important roles in harmonic analysis and other �elds. Moving in
the same direction, due to its applications to partial di�erential equations and di�erentia-
tion theory, the fractional integrals have attracted many attentions. In many applications,
a crucial step has been to show that these classical operators of harmonic analysis are
bounded on some function spaces. Also, results on weak and strong type inequalities for
this operators of this kind in Lebesgue spaces are classical and can be found for example
[13].

One of the well-known example of fractional integrals, the Riesz potentialI � of order
� (0 < � < n ) is de�ned by

I � f (x) =
Z

Rn
f (x � y)jyj � � ndy:
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The famous Hardy-Littlewood-Sobolev theorem states thatI � is bounded operator from
usual Lebesgue spacesL p to L q when 1 < p < q < 1 , 1=q= 1=p� �=n [13,14].

Historically, in 1971, Muckenhoupt and Wheeden showed the weighted(L p; L q) bound-
edness of the homogeneous fractional integral operatorI 
 ;� for power weight when 1 <
p < n=� [12]. In 1988, Ding and Lu obtained the weighted(L p; L q) boundedness ofI 
 ;�
for A(p; q) weight [3]. Moreover, for the other conditions of p, the boundedness ofI 
 ;�
can also be found in [1, 2]. In 1960, Stein and Weiss [15] used the theory of harmonic
functions of several variables to prove thatI � is bounded fromH 1 to L n=(n� � ) . The work
was later generalized to theH p spaces by Taibleson and Weiss [16].In 1980, using the
molecular characterization of the real Hardy spaces, Taibleson and Weiss proved thatI �
is also bounded fromH p to L q or H q, where 0 < p < 1 and 1=q= 1=p� �=n .

In this paper, we will mainly concerned with the boundedness properties ofBn -Riesz
potential with rough kernel I �


 ;� on H p
� �

(Rn
+ ) Hardy spaces in the settings of� � Laplace-

Bessel operator. For0 < p < 1 , the H p
� �

Hardy spaces are de�ned by

H p
� �

= f f 2 S+ : jj f jjH p
� �

= jj sup
t> 0

j� t 
 f jjj L p
�

< 1g :

Here, � 2 S(Rn
+ ) satis�es

R
Rn

+
' (x)x �

ndx = 1 . Also, Bn -Riesz potential with rough kernel
I �


 ;� is de�ned by

(I �

 ;� f )(x) =

Z

Rn
+

T y f (x)
�

( y)jyj � � Q �

y�
ndy;

where0 < � < Q and T y is the generalized shift operator [5,9,10]. Here, our investigation
are based on the so-called generalized shift operator introduced �rst by Levitan.

Since the classical Riesz potential operatorI � is essentially the homogeneous fractional
integral operators I 
 ;� when 
 = 1 , by comparing mapping properties of I � and I �


 ;� ,
the problem arises to ask whether the homogeneousBn -Riesz potential I �


 ;� has similar
boundedness onH p

� �
spaces. We would like to point out that our proofs also suit for

Bn -Riesz potential operator with homogeneous characteristic type onH p
� �

Hardy spaces
in terms of atomic-molecular characterization way.

The aim of this paper is to answer this question. Using the atomic-molecular de-
composition of H p

� �
, we showed that I �


 ;� is bounded from H p
� �

to L p
� or H q

� �
for some

0 < p � 1.Thus, we verify that Stein-Weiss's conclusion forp = 1 and Taibleson-Weiss's
conclusion for some0 < p < 1 hold also for I �


 ;� .
Now let us �rst recall some necessary notions and notations. Throughout the whole

paper, C always means a positive constant independent of the main parameters, it may
change from one occurrence to another.

2. Some preliminaries

Let Rn
+ be the part of the Euclidean spaceRn of points x = ( x1; :::; xn ), de�ned by the

inequality xn > 0. We write x = ( x0; xn ); x0 = ( x1; : : : ; xn� 1) 2 Rn� 1, B (x; r ) = f y 2
Rn

+ ; jx � yj < r g, B (x; r )c = Rn
+ nB (x; r ). For any measurable setB � Rn

+ we de�ne
jB j � =

R
B x �

ndx, where � > 0. Then jB (0; r )j � = ! (n; � )r Q ; Q = n + � , where

! (n; � ) =
Z

B (0;1)
x �

ndx = �
n � 1

2 �
� � + 1

2

��
2�

� Q � 2
2

�� � 1:

Let S+ = S(Rn
+ ) be the space of functions which are the restrictions toRn

+ of the test
functions of the Schwartz that are even with respect toxn , decreasing su�ciently rapidly
at in�nity, together with all derivatives of the form

D 
� = D  0

x0B  n
n = D  1

1 :::D  n � 1
n� 1 B  n

n =
@ 1

@x 1
1

:::
@ n � 1

@x n � 1
n� 1

B  n
n ;
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i.e., for all ' 2 S+ , sup
x2 Rn

+

jx � D 
� ' j < 1 ; whereBn =

@2

@x2n
+

�
xn

@
@xn

is the Bessel di�erential

expansion, = (  1; :::;  n ) and � = ( � 1; :::; � n ) are multi-indexes, andx � = x � 1
1 : : : x � n

n . For
a �xed parameter � > 0, let L p

� = L p
� (Rn

+ ) be the space of measurable functions with a
�nite norm

kf kL p
�

�
� Z

Rn
+

jf (x)jpx �
ndx

� 1=p

is denoted byL p
� � L p

� (Rn
+ ); 1 � p < 1 . The space of the essentially bounded measurable

function on Rn
+ is denoted by L 1

� (Rn
+ ). The spaceS+ equipped with the usual topology.

We denote by S0
+ � S0

+
�
Rn

+
�

the topological dual of S+ is the collection of all tempered
distributions on Rn

+ equipped with the strong topology.
The mixed Fourier-Bessel transform onS+ has the form

F� f (x) =
Z

Rn
+

f (y) e� i (x0;y0) j � � 1
2

(xnyn ) y�
ndy; (2.1)

where (x0; y0) = x1y1 + : : : + xn� 1yn� 1, j � , � > � 1=2, is the normalized Bessel function,
and Cn;� = (2 � )n� 12� � 1� 2(( � + 1) =2) = 2

� ! (2; � ). This transform is associated to the
Laplace-Bessel di�erential operator

� � =
nX

i =1

@2

@x2i
+

�
xn

@
@xn

=
n� 1X

i =1

@2

@x2i
+ Bn ; � > 0;

where Bn =
@2

@x2n
+

�
xn

@
@xn

.

The Fourier-Bessel transform is invertible onS+ and the inverse transform is given by
the relation

F � 1
� f (x) = Cn;� F� f (� x0; xn ): (2.2)

The generalized shift operator is de�ned as follows:

T y f (x) = C�

Z �

0
f

�
x0� y0;

q
x2

n � 2xnyn cos� + y2
n

�
sin� � 1 �d�; (2.3)

where C� = � � 1
2 �

�
� +1

2

�
[�

� �
2

�
]� 1 (see [9, 10]). Following [9, 10], let us introduce the

generalized convolution generated by shift (2.3) according to the formula

(f 
 g)(x) =
Z

Rn
+

f (y) T yg(x) y�
ndy:

The integrals of the Bn -fractional type with homogeneous characteristic
( x) of degree
zero onRn

+ have the following form:

(I �

 ;� f )(x) =

Z

Rn
+

f (y)T y
�


( x)
jxjQ� �

�
y�

ndy; 0 < � < Q: (2.4)

It is clear that when 
 = 1 , I �

 ;� is the usual Bn -Riesz potential I �

� ([5� 8,11]).
For the Bn -Riesz potentials the following theorem is valid.

Theorem 2.1 ([7], Corollary 1). Let 0 < � < Q and 
 2 L r
� (Sn� 1

+ ) with r > Q
Q� � be

homogeneous characteristic of degree zero onRn
+ .

i) If 1 < p < Q
� , then the condition 1

p � 1
q = �

Q is necessary and su�cient for the
boundedness ofI �


 ;� from L p
� (Rn

+ ) to L q
� (Rn

+ ).
ii) If p = 1 , then the condition 1

p � 1
q = �

Q is necessary and su�cient for the bound-
edness ofI �


 ;� from L 1
� (Rn

+ ) to WL q
� (Rn

+ ).
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De�nition 2.2. Let 0 < p � 1 � q � 1 with p 6= q. A (p; q; s)-atom a(x) is a function in
L q

� (Rn
+ ) which satis�es the following properties:

i) supp a � B ,

ii) jja(x)jjL q
�

� j B j
1
q � 1

p
� ,

iii)
R

B a(x)x � x �
ndx = 0 for all s with j� j � s; s = [ Q

� 1
p � 1

�
].

Now we are in a position to state our main results as follows.

Theorem 2.3. Let 0 < � < Q , and let 
 2 L r
� (Sn� 1

+ ) for r > Q
Q� � be homogeneous

characteristic of degree zero onRn
+ . Then there is a constantC > 0 such that

jj I �

 ;� f jj

L
Q

Q � �
�

� Cjj f jjH 1
� �

:

Theorem 2.4. Let 0 < � < 1, Q
Q+ � � p < 1, 1

q = 1
p � �

Q and 
 2 L r
� (Sn� 1

+ ) with r > Q
Q� �

be homogeneous characteristic of degree zero onRn
+ . Then there is a constantC > 0 such

that
jj I �


 ;� f jjL q
�

� Cjj f jjH p
� �

:

Theorem 2.3 and 2.4 give the (H p
� �

; L q
� ) boundedness ofI �


 ;� . The following theorem
will give the (H p

� �
; H q

� �
) boundedness ofI �


 ;� .

Theorem 2.5. Let 0 < � < 1
2 , 1

q = 1
p � �

Q and let 
 2 L r
� (Sn� 1

+ ) with r > 1
1� 2� be

homogeneous characteristic of degree zero onRn
+ . Then for � < � � 1 and Q

Q+ � < p �
Q

Q+ � , there is a constant C > 0 such that

jj I �

 ;� f jjH q

� �
� Cjj f jjH p

� �
:

3. The proof of main results

This section is devoted to the proofs of the theorems. For an operator, to prove the
boundedness fromH 1

� �
to L 1

� or H p
� �

to L p
� , a common method is to take one atom at a

time. It isn't hard to verify (p; q; s)-atoms are mapped intoL p spaces, uniformly. However,
to study the problem of boundedness ofBn -Riesz potential operator onH p

� �
Hardy spaces,

we need a modi�cation. The method we adopted is similar to the same in [4].
Before we prove our main results, we need to give some necessary facts.

Theorem 3.1 ([11], Theorem 1.1). Let 1 � r � 1 , 0 < � < Q and K (x) be a kernel of
B-fractional type with homogeneous characteristic of degree zero onRn

+ . Then there exists
A; C > 0 such that for all t > 0 (t = 2 j ) and x 2 Rn

+

� Z

jx j>A

jT yK (tx ) � K (tx )jr x �
ndx

� 1
r

� Ct
Q � �

r ; jyj < 1
A : (3.1)

Proof of Theorem 2.3 and 2.4 . Let us �rst start to give the proof of Theorem 2.3.
By the atomic decomposition theory of Hardy spaces, it is su�cient to prove that there is
constant C such that for any (1; `; 0)-atom a(x), the inequality

jj (I �

 ;� a)(x)jjL q

�
� C (3.2)

holds, where` > 1 and q = Q
Q� � . We now take 1 < ` 1 < ` 2 < 1 , such that 1

`1
� 1

`2
= �

Q .
For the present investigation of the proof, we consider the functiona(x) is (1; `1; 0)-atom
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supported in a ball B = B (0; d) with center at zero and radius d. So we can write

jj (I �

 ;� a)(x)jjL q

�
�

� Z

2B
j(I �


 ;� a)(x)jqx �
ndx

� 1
q

+
� Z

(2B )c
j(I �


 ;� a)(x)jqx �
ndx

� 1
q

:= I 1 + I 2:

By applying Hölder's inequality and Theorem 2.1, we may estimateI 1 as follows:

I 1 � Cjj I �

 ;� ajj

L ` 2
�

jB j
1
q � 1

` 2
� � Cjjajj

L ` 1
�

jB j
1
q � 1

` 2
� � C:

For I 2, by the vanishing condition (iii) of a(x), we obtain

I 2 =
� Z

(2B )c
j(I �


 ;� a)(x)jqx �
ndx

� 1
q

=
� Z

(2B )c

�
�
�
�

Z

Rn
+

T y �
K � (x)

�
a(y)y�

ndy
�
�
�
�

q

x �
ndx

� 1
q

=
Z

(2B )c
ja(y)j

� Z

Rn
+

�
�T y �

K � (x)
�

� K � (x)
�
�qx �

ndx
� 1

q

y�
ndy

�
Z

(2B )c
ja(y)j

� 1P

j =1

Z

2j d�j x j< 2j +1 d

�
�T y �

K � (x)
�

� K � (x)
�
�qx �

ndx
� 1

q

y�
ndy

(3.3)

where K � (x) = 
( x)jxj � � Q . Sincer > Q
Q� � = q, by Hölder's inequality, we obtain

� Z

2j d�j x j< 2j +1 d

�
�T y �

K � (x)
�

� K � (x)
�
�qx �

ndx
� 1

q

� C(2j d)Q( 1
q � 1

r )
� Z

2j d�j x j< 2j +1 d

�
�T y �

K � (x)
�

� K � (x)
�
� r x �

ndx
� 1

r

:
(3.4)

Applying Theorem 3.1, we have

� Z

2j d�j x j< 2j +1 d

�
�T y �

K � (x)
�

� K � (x)
�
� r x �

ndx
� 1

r

� C(2j d)
Q � �

r : (3.5)

By the inequalities (3.4) and (3.5), we get

1P

j =1

� Z

2j d�j x j< 2j +1 d

�
�T y �

K � (x)
�

� K � (x)
�
�qx �

ndx
� 1

q

� C
1P

j =1
(2j d)Q( 1

q � 1
r ) (2j d)

Q � �
r < 1 :

(3.6)

Therefore, by (3.3) and (3.6) we obtain

I 2 � C
Z

B
ja(y)jy�

ndy � Cjjajj
L ` 1

�
jB j

1

`
0
1

� � C:

The proof of Theorem 2.3 is �nished.
The proof of Theorem2.4 is similar to Theorem 2.3. Then, we only give the main steps

of the proof by choosing1 < ` 1 < ` 2 < 1 such that 1
`1

� 1
`2

= 1
p � 1

q = �
Q . Let a(x) be

(p; `1; 0)-atom supported in the ball B (0; d). Here we still need to verify the validity of ( 3.2)
for the atom a(x). As in the previous proof, we give the similar estimates forI 1 and I 2,
respectively. We estimateI 1 again by using Hölder's inequality and Theorem2.1. However,
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using the conditions of Theorem2.4, if p � Q
Q+ � , then we obtain (� + Q) � (Q=p) � 0. In

this case, by the Theorem2.1, we have

1X

j =1

� Z

2j d�j x j< 2j +1 d

�
�T y �

K � (x)
�

� K � (x)
�
�qx �

ndx
� 1

q

� C
1X

j =1

(2j d) � Q
q

� j B j � 1=q
� < 1 :

Finally, from the discussion above and(3:3) we have

I 2 � CjB j � 1=q
�

Z

B

ja(y)jy�
ndy � CjB j � 1=q

� jjajj
L ` 1

�
jB j

1=`
0
1

� � C:

This completes the proof of Theorem2.4. �

Proof of Theorem 2.5 . First, let us state r > Q
Q� � . We can select1 < ` 1 < ` 2 such

that 1
`1

� 1
`2

= 1
p � 1

q = �
Q and Q

Q� � < ` 2 < r . Take � so that 1
q � 1 < � < � � �

Q � 1� �
Q .

Denote a0 = 1 � 1
q + � , b0 = 1 � 1

`2
+ � and let a(x) be a (p; `1; 0)-atom supported in the

ball B (0; d). By the atomic-molecular decomposition theory of real Hardy spaces [14], it
su�ces to show that I �


 ;� a is a (q; `2; 0; � )-molecule for proving Theorem 2.5. To prove
this, we still need to verify that (I �


 ;� a)(x) satis�es the following conditions:

i) jxjQb0 (I �

 ;� a)(x) 2 L `2

� ,

ii) N`2
� (I �


 ;� a) := jj I �

 ;� ajja0=b0

L ` 2
�

jjj :jQb0 (I �

 ;� a)( :)jj1� a0=b0

L ` 2
�

< 1 ,

iii)
R

B (I �

 ;� a)(x)x �

ndx = 0 .

Moreover, we also need to prove that there is a constantC > 0, independent ofa(x), such
that

N`2
� (I �


 ;� a) � C:

Let us estimate every part. For (i), write

jjj :jQb0 (I �

 ;� a)( :)jj

L ` 2
�

� jjj :jQb0 (I �

 ;� a)( :)� 2B (:)jj

L ` 2
�

+

+ jjj :jQb0 (I �

 ;� a)( :)� (2B )c (:) jjL ` 2

�

:= J1 + J2:

Observe that Q
Q� � < ` 2 < r and 1

`1
� 1

`2
= �

Q , by Theorem 2.1, we have

J1 � CjB jb0
� jj I �


 ;� ajj
L ` 2

�
� CjB jb0

� jjajj
L ` 1

�
: (3.7)

For J2, by the moment condition of a(x) we obtain

J2 �
Z

B

ja(y)j
� 1P

j =1

Z

2j d�j x j< 2j +1 d

�
�T y �

K � (x)
�

� K � (x)
�
� `2 jxjQb0 `2 x �

ndx
� 1

` 2
y�

ndy: (3.8)

If we apply the Hölder's inequality and Theorem 3.1, we get
� Z

2j d�j x j< 2j +1 d

�
�T y �

K � (x)
�

� K � (x)
�
� `2 jxjQb0 `2 x �

ndx
� 1

` 2

�
� Z

2j d�j x j< 2j +1 d

�
�T y �

K � (x)
�

� K � (x)
�
� r x �

ndx
� 1

r

�
� Z

2j d�j x j< 2j +1 d
jxjQb0 `2 (r=` 2 )

0

x �
ndx

� 1
` 2 ( r=` 2 ) 0

� C(2j d)
Q
r (2j d)Qb0 (2j d)Q( 1

` 2
� 1

r ) = C(2j d)Q+ Q� � j B j1+ �
� :
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Thus, by the inequality above (3.8), we have

J2 � CjB j
� + �

Q
�

Z

B

ja(y)jy�
ndy � CjB j

� + �
Q

� jjajj
L ` 1

�
jB j

1=`
0
1

� : (3.9)

By (3.7) and (3.9), we know that (i) holds and

N`2
� (I �


 ;� a) = jj I �

 ;� ajja0=b0

L ` 2
�

jjj :j(Q)b0 (I �

 ;� a)( :)jj1� a0=b0

L ` 2
�

� Cjjajja0=b0

L ` 1
�

jB j
� + �

Q (1� a0=b0 )
� jjajj1� a0=b0

L ` 1
�

jB j
1� a0=b0 (1=`

0
1 )

� � C:

Finally, we need to verify (iii) to complete the proof of Theorem 2.5. To this end, we �rst
show that (I �


 ;� a)(x) 2 L 1
� (Rn

+ ). So, we may write
Z

Rn
+

j(I �

 ;� a)(x)jx �

ndx =
Z

jx j< 1

j(I �

 ;� a)(x)jx �

ndx +
Z

jx j� 1

j(I �

 ;� a)(x)jx �

ndx

:= E1 + E2:

Clearly E1 � C since I �

 ;� a(x) 2 L `2

� . On the other hand, by b0 � 1=`
0

2 = � > 0 and
jxjQb0 (I �


 ;� a)( :) 2 L `2
� , again using Hölder's inequality we obtain

E2 � jjj :jQb0 (I �

 ;� a)( :)jj

L ` 2
�

� Z

jx j� 1

jxj � Qb0 `
0
2 x �

ndx
�

< 1 :

Therefore, F� (I �

 ;� a) 2 C(Rn

+ ). In order to check
Z

(I �

 ;� a)(x)x �

ndx = F� [I �

 ;� a](0) = 0 ;

it is su�cient to show
lim

j � j! 0
F� [I �


 ;� a](� ) = 0 : (3.10)

It is well known that F� [I �

 ;� a](� ) = F� [a](� )F�

�
K � (x)

�
(� ), and

F�
�
K � (� )

�
=

Z

jx j< 1

K � (x)e� i (x0;� 0) j � � 1
2

(xn � n ) x �
ndx

+
1P

j =1

Z

2j � 1 �j x j< 2j
K � (x)e� i (x0;� 0) j � � 1

2
(xn � n ) x �

ndx;

where K � (x) = 
( x)jxj � � Q . Thus, we obtain
�
�
�
�F�

�
K � (� )

�
�
�
�
� � C +

1P

j =1
jF� [K �;� j (� )]j;

where K �;� j (� ) = 
( � )j� j � � Q � [2j � 1 ;2j ) (j� j). Here we give an estimate ofjF� [K �;� j (� )]j for
any j � 1 in the study of this problem.

Lemma 3.2. Suppose that0 < � < 1
2 , and 
 2 L r

� (Sn� 1) with r > 1
1� 2� is homogeneous

characteristic on Rn
+ . Then there existsC and � > 0, such that 2� < � < 1=r

0
� 1 and

for j � 1
�
�F� [K �;� j (� )]

�
� � Cn;�;� 2(� � Q=2)j j� j � �= 2;

where Cn;�;� =
�
�

(n+ � � � )=2
�

�
�

�= 2
� .
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Proof. First, we shall need the Fourier-Bessel transforms of the function

F�
�
e� r jx j2 �

(� ) = e� j � j 2

4r (2r )
� 2� � n

2 r > 0; x; � 2 Rn
+ :

By the property < F � K � ; ' > = < K � ; F� ' > of generalized functions, we may write
Z

Rn
+

e� r jx j2 F� ' (x)x �
ndx =

Z

Rn
+

' (x)F� e� j x j 2

4r x �
ndx:

We now integrate both sides of the above with respect tor from 0 to 1 having multiplied
the equation by r (Q� � )=2� 1. We obtain
Z

Rn
+

F� ' (x)
� Z 1

0
r (Q� � )=2� 1e� r jx j2 dr

�
x �

ndx =
Z

Rn
+

' (x)
� Z 1

0
r (Q� � )=2� 1(2r )

� 2� � n
2 e� j x j 2

4r

�
x �

ndx:

If we calculate the inner integrals, we have

�
�
(n + � � � )=2

� Z

Rn
+

F� ' (x)
( x)jxj � � Qx �
ndx = 2 � � Q=2�

�
�= 2

� Z

Rn
+

' (x)
( x)jxj � � x �
ndx:

Taking the inverse Fourier-Bessel transform and the modulus property, the required in-
equality is obtained. �

Now let us return to the proof of Theorem 2.5. Applying the conclusion of Lemma3.2,
we obtain

F�
�
K � (� )

�
� Cn;�;� +

1P

j =1
jF� [K �;� j (� )]j

� Cn;�;� + Cn;�;�
1P

j =1
2(� � Q=2)j j� j � �= 2

� Cn;�;� (1 + j� j � �= 2):

(3.11)

On the other hand, for F� [a](� ) we have
�
�
�
�

Z

Rn
+

a(x)e� i (x0;� 0) j � � 1
2

(xn � n ) x �
ndx

�
�
�
� =

�
�
�
�

Z

B
a(x)[e� i (x0;� 0) � 1]j � � 1

2
(xn � n ) x �

ndx
�
�
�
�

� Cn;�;�

Z

B
ja(x)jj � jj xjx �

ndx � Cn;�;� j� j:
(3.12)

Combining (3.11) and (3.12) we obtain
�
�F� (I �


 ;� a)( � )
�
� � j F�

�
a(� )

�
j
�
�F�

�
K � (� )

� �
� � Cn;�;� (j� j + j� j1� �= 2): (3.13)

By the choice of � it is known that 1 � �= 2 > 0. So, the required equality (3.10) holds by
(3.13). Hence (I �


 ;� a)(x) satis�es the condition (iii) and Theorem 2.5 follows. �
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Abstract
Let R be a unital ring with involution. The (j; m )-core inverse of a complex matrix
was extended to an element inR. New necessary and su�cient conditions such that an
element in R to be (j; m )-core invertible are given. Moreover, several additive and product
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1. Introduction

Throughout this paper, R denotes a unital ring with involution, i.e., a ring with unity
1, and a mapping a 7! a� that satis�es (a� ) � = a, (ab) � = b� a� and (a + b) � = a� + b� , for
all a; b 2 R. Let a; x 2 R. If axa = a, xax = x, (ax) � = ax and (xa) � = xa hold, then x
is called aMoore-Penrose inverseof a. If such an elementx exists, then it is unique and
denoted by ay. The set of all Moore-Penrose invertible elements inR will be denoted by
Ry. If the equation axa = a and (ax) � = ax hold, then x is called af 1; 3g-inverse ofa.

An element a 2 R is said to beDrazin invertible if there exists x 2 R such that ax = xa,
xax = x and ak = ak+1 x for some nonnegative integerk. The element x is unique if it
exists and denoted byaD [3]. The smallest positive integerk in the de�nition of the Drazin
inverse is called theindex of a, denoted by ind(a). If ind(a) � 1, then a is group invertible
and the group inverse ofa is denoted by a# . Thus, a# satis�es a# aa# = a# , a# a = aa#

and aa# a = a. The sets of all Drazin invertible and all group invertible elements in R will
be denote byRD and R# , respectively.

For an elementa in a ring R, we denoteaR = f ax j x 2 Rg and Ra = f xa j x 2 Rg. The
notion of the core inverse of a complex matrix was introduced by Baksalary and Trenkler
[1]. In [8], Raki¢ et al. generalized the core inverse of a complex matrix to the case of
an element in R. More precisely, let a; x 2 R. If axa = a, xR = aR and Rx = Ra� ,
then x is called a core inverse of a. If such an element x exists, then it is unique and
denoted by a# . The set of all core invertible elements inR will be denoted by R # . There
are some generalizations of the core inverse, for example, the B-T inverse in [2] and the
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DMP-inverse in [5]. Moreover, the B-T inverse ofa is a� = ( a2ay)y by [2, De�nition 1] and
the DMP-inverse of a is aD; y = aD aay by [5, Theorem 2.2].

Let N denote the set of all positive integers andCn� n denote the set of alln � n complex
matrices over the complex �led C. A matrix A 2 Cn� n is called anEP (range-Hermitian)
matrix if R(A) = R(A � ) [9], where R(A) is the range (or column space) ofA. An element
a 2 R is said to be anEP element if a 2 Ry \ R# and ay = a# (see [4]). The set of all EP
elements inR will be denoted by REP .

The (j; m )-core inverse was introduced in [13] for a complex matrix. Let A 2 Cn� n and
j; m 2 N. A matrix X 2 Cn� n is called a(j,m)-core inverse of A, if it satis�es X = AD AX
and Am X = Am (A j )y: If such X exists, then it is unique and denoted byA 	

j;m .
We introduce and characterize the(j; m )-core inverse of an element in a ring with invo-

lution, as extension of corresponding inverse of a square complex matrix. Some additive
and product properties of two (j; m )-core invertible elements are presented. Also, we de�ne
a order related to the (j; m )-core inverse.

2. The (j; m )-core inverse in rings

Let us start this section with some useful lemmas. The next lemma was proved for
complex matrices in [13], but for elements in rings can be proved in a similar way, thus
we omit the proof.

Lemma 2.1. Let a 2 R. If there exists x 2 R such that axk+1 = xk and xak+1 = ak for
somek 2 N, then

(1) ak = xka2k = akxkak = axak ;
(2) xk = akx2k = xkakxk = xax k ;
(3) akxk = ak+1 xk+1 ;
(4) xkak = xk+1 ak+1 .

The following lemma was proved for complex matrices in [13, Lemma 2.5], but it is also
valid in a ring. For the convenience of the readers, here we will give the proof.

Lemma 2.2. Let a 2 R. Then a 2 RD if and only if there exists x 2 R such that
axk+1 = xk and xak+1 = ak for some k 2 N [ f 0g. In this case, aD = xk+1 ak .

Proof. Assumea 2 RD with ind(a) = k. If we let x = aD , then it is easy to check that
axk+1 = xk and xak+1 = ak . Conversely, let y = xk+1 ak , we shall prove that y is the
Drazin inverse of a. Have in mind axk+1 = xk and xak+1 = ak , we get

a(xk+1 ak ) = xkak = xk+1 aka; (2.1)

that is, xk+1 ak and a commute. Then, by (1) and (4) in Lemma 2.1, we have that

(xk+1 ak )a(xk+1 ak ) = xk+1 ak+1 xk+1 ak = xkak (xk+1 ak )

= xkxk+1 akak = xk+1 xka2k = xk+1 ak :
(2.2)

From (1) in Lemma 2.1, we obtain

(xk+1 ak )ak+1 = x(xka2k )a = xaka = xak+1 = ak : (2.3)

Thus, we deduce thataD = xk+1 ak , by the de�nition of the Drazin inverse and in view of
(2:1), (2:2) and (2:3). �

Corollary 2.3. Let a 2 R. Then a 2 R# if and only if there exists x 2 R such that
ax2 = x and xa2 = a.

Now, we introduce the de�nition of the ( j,m )-core inverse for an element in a ring.
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De�nition 2.4. Let a 2 RD and aj 2 Ry and j; m 2 N. An element x 2 R is called a
(j; m )-core inverse ofa, if it satis�es

x = aD ax and am x = am (aj )y: (2.4)

If a is (j,m )-core invertible, then the solution of (2:4) is unique and denoted bya	
j;m .

In fact, if x satis�es (2:4), then x = aD ax = ( aD )m am x = ( aD )m am (aj )y = aD a(aj )y. It
is easy to check that if ind(a) � m, then x = aD a(aj )y is the unique solution of (2:4).
In [13, Example 4.4], the authors have shown that ifm < ind(A), then the equations in

(2:4) may be not consistent. That is, if we let A =
�

0 1
0 0

�
, it is easy to get ind(A) = 2

and AD = 0 . Let m = j = 1 and suppose thatX is the solution of system in (2:4), then
X = AD AX = 0 , which givesAA y = AX = 0 , thus A = AA yA = 0 , this is a contradiction.

Theorem 2.5. Let a 2 RD , aj 2 Ry and j; m 2 N. Then the followings are equivalent:
(1) a is (j; m )-core invertible;
(2) there existsx 2 R such that x = aD ax and am (aj )y = aD am+1 x;
(3) there exists x 2 R such that x = aD ax, am+1 (aj )y = am+1 x and am (aj )y =

aD am+1 (aj )y.
Furthermore, the above elementx is unique andx = a	

j;m .

Proof. (1) ) (3). Suppose that a is (j; m )-core invertible. Then a	
j;m = aD aa	

j;m and
am a	

j;m = am (aj )y. The equality am+1 (aj )y = am+1 x is trivial and

am (aj )y = am a	
j;m = am (aD aa	

j;m ) = aD am+1 a	
j;m

= aD am+1 (aD aa	
j;m ) = aD am+1 (aD )m am a	

j;m

= aD am+1 (aD )m am (aj )y = aD a2aD am (aj )y

= aD am+1 (aj )y:

That is, we have am (aj )y = aD am+1 (aj )y.
(3) ) (2). It is su�cient to prove am (aj )y = aD am+1 x. We haveam (aj )y = aD aam (aj )y =

aD am+1 x.
(2) ) (1). Since am x = am (aD ax) = aD am+1 x = am (aj )y, thus x is the (j; m )-core

inverse ofa by de�nition. �

If we take j = 1 and m = ind( a), the (j; m )-core inverse ofa is the DMP-inverse of
a. That is, the (j; m )-core inverse ofa is a generalization of the DMP-inverse ofa. By
Theorem 2.5, we have the following corollary.

Corollary 2.6. Let a 2 RD \ Ry with ind(a) = k. Then the following are equivalent:
(1) a is DMP-invertible;
(2) there existsx 2 R such that x = aD ax and akay = akx;
(3) there existsx 2 R such that x = aD ax and ak+1 ay = ak+1 x.

Furthermore, the above elementx is unique andx = aD; y.

Proposition 2.7. Let a 2 RD with ind(a) � m. If there exists x 2 R such that (akxk ) � =
akxk , (xkak ) � = xkak , axk+1 = xk and xak+1 = ak for some k 2 N, then a is (k; m)-core
invertible and a	

k;m = xk .

Proof. By Lemma 2.1 and Lemma 2.2, we haveakxkak = ak , xkakxk = xk , ak = xka2k

and aD = xk+1 ak . Equalities (akxk ) � = akxk and (xkak ) � = xkak imply that xk is the
Moore-Penrose inverse ofak . Thus, a is (k; m)-core invertible by ind(a) � m. From
aD = xk+1 ak , we can obtain (aD ) l = x l � 1aD for arbitrary l 2 N by induction. Thus

a	
k;m = aD a(ak )y = ( aD )kakxk = xk� 1aD akxk = xk (xka2k )xk = xkakxk = xk
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That is a	
k;m = xk . �

Example 2.8. The (j; m )-core inverse is di�erent from the DMP-inverse, B-T inverse

and core inverse. Leta =

2

4
1 2 3
0 0 1
0 0 0

3

5 2 C3� 3 and j � 2. Then it is easy to check

that a is not core invertible by ind(a) = 2 , aD; y =

2

4
1 2 0
0 0 0
0 0 0

3

5 by aD; y = aD aay and

a� =

2

4
1=5 0 0
2=5 0 0
0 0 0

3

5 by a� = ( a2ay)y, but a	
j;m =

2

4
1 0 0
0 0 0
0 0 0

3

5 .

Lemma 2.9 ([14, Theorem 3.1]). Let a; x 2 R. Then a is core invertible with a# = x if
and only if (ax) � = ax, xa2 = a and ax2 = x.

By Remark 4.7 in [13], if ind(a) � m, it is not di�cult to see that a	
j;m = a	

j;m +1 . That
is to say, the (j; m )-core inverse ofa coincides with the (j; m + 1) -core inverse ofa. Thus,
for notational convenience in the sequel, we only discuss theind(a) = m case. Forj 2 N,
we shall assume thatR	

j;m = f a 2 R j a is (j,m )-core invertible with and ind(a) = mg.

Theorem 2.10. Let a 2 R	
j;m with ind(a) � j and x 2 R. Then the following are

equivalent:

(1) a	
j;m = x;

(2) aj xaj = aj , (aj x) � = aj x and aj x2 = x;
(3) aj xaj = aj , (aj x) � = aj x, xaj x = x and xaj = aD a;
(4) x is the core inverse ofaj (or equivalently aj x2 = x, (aj x) � = aj x and x(aj )2 = aj ).

Proof. (1) ) (2)-(4). Let x = aD a(aj )y. First notice that aj x = aj (aj )y is Hermitian,
aj xaj = aj (aj )yaj = aj and

aj x2 = ( aj x)x = aj (aj )yaj (aD ) j (aj )y = aj (aD ) j (aj )y = aD a(aj )y = x:

Further, xaj = ( aD ) j aj (aj )yaj = ( aD ) j aj = aD a implies xaj x = aD ax = x and x(aj )2 =
(xaj )aj = aD aaj = aj . Hence,x is the core inverse ofaj by Lemma 2.9.

(4) ) (2). The equalities aj x2 = x, (aj x) � = aj x and x(aj )2 = aj yield aj xaj =
aj x2(aj )2 = x(aj )2 = aj .

(2) ) (1). Suppose that there existsx 2 R such that aj xaj = aj , (aj x) � = aj x and
aj x2 = x. Then aj (aj )y = aj xaj (aj )y = ( aj (aj )yaj x) � = aj x gives

am (aj )y = am aD a(aj )y = am (aD ) j aj (aj )y = am (aD ) j aj x = am x:

and
x = aj x2 = aD aaj x2 = aD ax;

i.e. x is the (j; m )-core inverse ofa.
(3) ) (1). If there exists x 2 R such that aj xaj = aj , (aj x) � = aj x, xaj x = x and

xaj = aD a, then we obtain that x is the (j; m )-core inverse ofa by aj (aj )(1;3) = aj (aj )y for
arbitrary f 1; 3g-inverse(aj )(1;3) of aj and x = xaj x = aD ax = ( aD ) j aj x = ( aD ) j aj (aj )y =
aD a(aj )y. �

Recall that, for e = e2 2 R, we can represent anya 2 R as a matrix form

a =
�

a11 a12
a21 a22

�

e� e
;

where a11 = eae, a12 = ea(1 � e), a21 = (1 � e)ae and a22 = (1 � e)a(1 � e).
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Theorem 2.11. Let a 2 R and j 2 N. Then a 2 R	
j;m if and only if a 2 RD

a =
�

a1 0
0 a2

�

e� e
and am (aj )y =

�
q1 q2
0 0

�

e� e
;

where e = aaD ,a1 is invertible in eRe. Moreover, the (j; m )-core inverse ofa is given by

a	
j;m =

�
a� m

1 q1 a� m
1 q2

0 0

�

e� e
:

Proof. Suppose thata 2 R	
j;m and let e = aD a. Then e2 = ( aD a)2 = aD a = e, ea(1� e) =

aaD a(1 � aD a) = 0 and (1 � e)ae = 0 . Hence,

a =
�

a1 0
0 a2

�

e� e
:

Sincea1aD = aD a2aD = aD a = aD a1 = e, so a1 is invertible in eRe and a� 1
1 = aD . Thus,

aD = aD aaD aaD =
�

aD 0
0 0

�

e� e
=

"
a� 1

1 0
0 0

#

e� e

:

Let

a	
j;m =

�
x1 x2
x3 x4

�

e� e
and am (aj )y =

�
q1 q2
q3 q4

�

e� e
:

From a	
j;m = aD aa	

j;m =
�

e 0
0 0

�

e� e
a	

j;m , we obtain x3 = x4 = 0 . Since am (aj )y =

aD aam (aj )y, then q3 = q4 = 0 .
Conversely, let

x =
�

a� m
1 q1 a� m

1 q2
0 0

�

e� e

we get x = aD ax and am x = am (aj )y. So, a 2 R	
j;m and x = a	

j;m . �

An element a 2 R is called� -DMP (Drazin-Moore-Penrose) of indexk if k is the smallest
natural number such that (ak )# and (ak )y exist and (ak )# = ( ak )y (see [7, De�nition 6]).
Before we answer when a(k; k)-core invertible element is an� -DMP element, some lemmas
are necessary.

Lemma 2.12 ([12, Theorem 3.9]). Let a 2 R. Then the following are equivalent:
(1) a 2 REP ;
(2) a 2 R# and aR � a� R;
(3) a 2 R# and Ra � Ra� ;
(4) a 2 R# and a� R � aR;
(5) a 2 R# and Ra� � Ra.

Lemma 2.13 ([7, Theorem 10]). Let a 2 R. Then a is � -DMP of index k if and only if
aD exists of indexk and aaD is Hermitian.

For a; b 2 R, the notations � a = f x 2 R j xa = 0g, a� = f x 2 R j ax = 0g and
[a; b] = ab� ba will be used.

Lemma 2.14 ([10, Lemma 8]). Let a; b2 R. Then:
(1) aR � bR implies � b � � a and the converse is valid wheneverb is regular;
(2) Ra � Rb implies b� � a� and the converse is valid wheneverb is regular.
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In the following theorem, we will give some necessary and su�cient conditions such that
a (k; k)-core invertible element to be a� -DMP element.

Theorem 2.15. Let a 2 R	
k;k . Then the following are equivalent:

(1) a is � -DMP of index k;
(2) akR � (ak ) � R;
(3) Rak � R(ak ) � ;
(4) � [(ak ) � ] � � (ak );
(5) [(ak ) � ]� � (ak ) � ;
(6) a	

k;k ak is Hermitian;
(7) [a	

k;k ; ak ] = 0 ;
(8) a	

k;k = ( aD )k ;
(9) a	

k;k = ( ak )y;
(10) a	

k;k ak (ak ) � = ( ak ) � ;
(11) a	

k;k = ( ak )yaaD ;
(12) [aka	

k;k ; a	
k;k ak ] = 0 ;

(13) [a	
k;k ; (aD )k ] = 0 ;

(14) there existsx 2 R such that axk+1 = xk , xak+1 = ak and xkak is Hermitian.

Proof. (1) ) (2). Since a is � -DMP of index k, then ak is EP, and thus akR � (ak ) � R
by Lemma 2.12.

(2) ) (1). From akR � (ak ) � R, we have ak = ( ak ) � r for some r 2 R: Thus ak =
(ak ) � r = ( akaD a) � r = ( aD a) � (ak ) � r = ( aD a) � ak : Post-multiplying ak = ( aD a) � ak by
(aD )k yields that aaD = ( aD a) � aaD , that is, a is � -DMP by Lemma 2.13and a (k; k)-core
invertible element is Drazin invertible.

The proof of (1) , (3) can be proved in a similar way of(1) , (2). The equivalences
(2) , (4) and (3) , (5) follow by Lemma 2.14and the regularity of ak is regular (because
a 2 R	

k;k ).
(1) , (6). Since a	

k;k ak = aD a(ak )yak = ( aD )kak (ak )yak = ( aD )kak = aD a, then a is
� -DMP by Lemma 2.13. The opposite implication can be proved in a similar way.

(1) , (7). It is easy to check that [a	
k;k ; ak ] = 0 is equivalent to aaD = ak (ak )y: Thus,

the equivalence can be seen by Lemma2.13.
(1) ) (8), (1) ) (9) and (1) ) (11) are follow by (ak )# = ( aD )k , for ind(a) = k.
(8) ) (1). The hypothesisa	

k;k = ( aD )k implies aaD = ak (aD )k = aka	
k;m = akaD a(ak )y =

ak (ak )y is Hermitian. So, by Lemma 2.13, a is � -DMP.
(9) ) (6). Using a	

k;k = ( ak )y, we get a	
k;k ak = ( ak )yak is Hermitian.

(10) , (6). Post-multiplying a	
k;k ak (ak ) � = ( ak ) � by [(ak )y]� , we observe thata	

k;k ak =
(ak )yak is Hermitian. The converse is obvious.

(11) ) (6) follows becausea	
k;k ak = ( ak )yaaD ak = ( ak )yak is Hermitian.

(7) ) (12) is evident.
(7) ) (13) is obvious by the commutativity of the Drazin inverse and (aD )k = ( ak )D .
(12) ) (1). Applying [aka	

k;k ; a	
k;k ak ] = 0 , aka	

k;k a	
k;k ak = aaD and a	

k;k akaka	
k;k =

ak (ak )y, we note that aaD = ak (ak )y is Hermitian. Therefore, a is � -DMP by Lemma 2.13.
(13) ) (8). Becausea	

k;k (aD )k = ( aD )kak (ak )yak (aD )2k = aD a(aD )2k = ( aD )2k and
(aD )ka	

k;k = ( aD )kaD a(ak )y = ( aD )k (ak )y, the assumption [a	
k;k ; (aD )k ] = 0 gives(aD )2k =

(aD )k (ak )y. Thus, (aD )k = ak (aD )2k = ak (aD )k (ak )y = aD a(ak )y = a	
k;k .

(1) , (14). It is trivial by Lemma 2.2 and Lemma 2.13. Have in mind, aD a =
xk+1 aka = xk+1 ak+1 = xkak . �
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There exists some partial orderings base on the core inverse, for example [1,11], as the
(j; m )-core inverse is a generalization of the core inverse, now we will introduce a ordering
base on the the(j; m )-core inverse.

Lemma 2.16. Let a 2 R	
j;m and b 2 R	

l;n . If ab = ba and a� b = ba� , then ab	
l;n = b	

l;n a,
a	

j;m b = ba	
j;m and a	

j;m b	
l;n = b	

l;n a	
j;m .

Proof. Notice that a	
j;m = aD a(aj )y and b	

l;n = bD b(bl )y. By ab= ba and [3, Theorem 1],
we have that a and aD commute with b and bD . Since ab = ba and ab� = b� a, then a
commute with bl and (bl ) � . Using [6, Lemma 1.1], we deduce thata commutes with (bl )y,
which implies that a commutes with b	

l;n . In the same way, we verify that a	
j;m b = ba	

j;m

and a	
j;m b� = b� a	

j;m , which imply a	
j;m b	

l;n = b	
l;n a	

j;m . �

Lemma 2.17. Let a; b 2 RD with ab = ba and p; q 2 N. If ind(a) = p and ind(b) = q,
then ind(ab) � max (p; q).

Proof. Since ind(a) = p and ind(b) = q, we have that ap = aD ap+1 and bq = bD bq+1 .
Suppose that q � p. By ab = ba and [3, Theorem 1], we have that (ab)p = apbp =
aD ap+1 bD bp+1 = ( ab)D (ab)p+1 , which gives that ind(ab) � p. Similarly, if p � q, then
ind(ab) � q. Thus, ind(ab) � max (p; q). �

By the de�nition of the (j; m )-core inverse, the condition ind(ab) � max (p; q) in
Lemma 2.17 is useful in the following theorem.

Theorem 2.18. Let a; b 2 R	
j;m such that ab = ba and a� b = ba� . Then ab 2 R	

j;m and
(ab) 	

j;m = b	
j;m a	

j;m = a	
j;m b	

j;m .

Proof. The assumption ab= ba gives that ab2 RD and (ab)D = bD aD = aD bD . Also, we
can easily prove that (ab) j 2 Ry and [(ab) j ]y = ( bj )y(aj )y = ( aj )y(bj )y. By Lemma 2.17,
we haveind(ab) � max f ind(a); ind(b)g = m. Therefore, ab is (j; m )-core invertible and

(ab) 	
j;m = ( ab)D ab[(ab) j ]y = bD aD ab(bj )y(aj )y = bD b(bj )yaD a(aj )y = b	

j;m a	
j;m = a	

j;m b	
j;m :

That is, (ab) 	
j;m = b	

j;m a	
j;m = a	

j;m b	
j;m . �

It is well-known that for two Drazin invertible elements a; b 2 RD with ab = ba = 0 ,
then (a + b)D = aD + bD .

Lemma 2.19. Let a; b2 RD with ab= ba= 0 and p; q 2 N. If ind(a) = p and ind(b) = q,
then ind(a + b) � max (p; q).

Proof. Since ind(a) = p and ind(b) = q, we have that ap = aD ap+1 and bq = bD bq+1 .
Suppose thatq � p. By ab= ba= 0 and [3, Corollary 1], we have that (a+ b)p = ap + bp =
aD ap+1 + bD bp+1 = ( a+ b)D (a+ b)p+1 , which gives that ind(a+ b) � p. Similarly, if p � q,
then ind(a + b) � q. Thus, ind(a + b) � max (p; q). �

Theorem 2.20. Let a; b 2 R	
j;m such that ab = ba = 0 = a� b = ba� . Then a + b 2 R	

j;m

and (a + b) 	
j;m = a	

j;m + b	
j;m .

Proof. First, we have that a+ b 2 RD and (a+ b)D = aD + bD by [3, Corollary 1]. Further,
we can verify that (a + b) j 2 Ry and [(a + b) j ]y = ( aj )y + ( bj )y. By Lemma 2.19, we have
ind(a + b) � max f ind(a); ind(b)g = m. So, a + b is (j; m )-core invertible and

(a + b) 	
j;m = ( aD + bD )(a + b)[(aj )y + ( bj )y] = aD a(aj )y + bD b(bj )y = a	

j;m + b	
j;m :

That is, (a + b) 	
j;m = a	

j;m + b	
j;m . �
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Let RD; y denotes the set of all DMP invertible elements ofR. Since the (j; m )-core
inverse ofa is a generalization of the DMP-inverse ofa, thus by Theorem 2.18 and Theo-
rem 2.20, we have the following two corollaries.

Corollary 2.21. Let a; b 2 RD; y such that ab = ba and a� b = ba� . Then ab is DMP
invertible and (ab)D; y = bD; yaD; y = aD; ybD; y.

Corollary 2.22. Let a; b2 RD; y such that such thatab= ba= 0 = a� b = ba� . Then a+ b
is DMP invertible and (a + b)D; y = aD; y + bD; y.

3. The 	 -core relation

As the (j; m )-core is a generalation of the core inverse and the core partial ordering was
introduced in [1], here we introduce an ordering base on the(j; m )-core.

De�nition 3.1. Let a be (j; m )-core invertible and b 2 R. Then a is below b under the
	 -core relation (denoted by a � 	 b) if

a	
j;m a = a	

j;m b and aa	
j;m = ba	

j;m :

Lemma 3.2. Let a be (j; m )-core invertible and b 2 R with ind(a) � min( j; m ). Then

(1) a	
j;m a = a	

j;m b , (aj )ya = ( aj )yb , (aj ) � a = ( aj ) � b , a� aj = b� aj , a� aD =
b� aD ;

(2) aa	
j;m = ba	

j;m , aaD = baD , aj +1 = baj .

Proof. (1). Pre-multiplying a	
j;m a = a	

j;m b by (aj )yaj yields (aj )ya = ( aj )yb. Pre-
multiplying (aj )ya = ( aj )yb by aD a yields a	

j;m a = a	
j;m b. The equivalence(aj )ya = ( aj )yb

, (aj ) � a = ( aj ) � b is obvious by ((aj )y) � = (( aj ) � ) � . The remaining is obvious.
(2). First we show that aa	

j;m = ba	
j;m , a2aD = baD a , aj +1 = baj . Post-multiplying

aa	
j;m = ba	

j;m by aj yields a2aD = baD a. Post-multiplying a2aD = baD a by (aj )y yields
aa	

j;m = ba	
j;m . Post-multiplying aa	

j;m = ba	
j;m by a2j yields aj +1 = baj . Post-multiplying

aj +1 = baj by (aD ) j (aj )y yields aa	
j;m = ba	

j;m . By post-multiplying aD on a2aD = baD a,
we haveaaD = baD and aaD = baD implies a2aD = baD a is trivial. Thus a2aD = baD a if
and only if aaD = baD . �

Theorem 3.3. Let a be (j; m )-core invertible and b 2 R with ind(a) � min( j; m ). Then
the following statements are equivalent:

(1) a � 	 b;
(2) a� aj = b� aj and aj +1 = baj ;
(3) a� aD = b� aD and aaD = baD ;
(4) There exists an idempotentp 2 R such that aD R = pR, ap = bp and a� p = b� p;
(5) There exists an Hermitian idempotent q 2 R such that aj R = qR, aq = bq and

qa = qb.

Proof. (1) , (2) , (3). These equivalences follow by Lemma3.2.
(1) ) (4). For p = aD a, �rst we have that aD R = aD aR = pR. By (1) and Lemma

3.2, we observe thatap = ( aaD )a = baD a = bp and a� p = ( a� aD )a = b� aD a = b� p.
(4) ) (1). Assume that there exists an idempotent p 2 R such that aD R = pR,

ap = bp and a� p = b� p. Then aD = paD gives a� aD = ( a� p)aD = b� paD = b� aD and
aaD = ( ap)aD = bpaD = baD . Using Lemma 3.2, we deduce that (1) holds.

(1) , (5). We check this part similarly as (1) , (4). �

Theorem 3.4. The 	 -core relation is a pre-order on the set of all(j; m )-core invertible
elements in R, where the index of these elements are less or equalmin( j; m ).
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Proof. Obviously, � 	 is re�exive. To verify that � 	 is transitive, suppose that a; b; c2 R
such that a and b are (j; m )-core invertible elements,a � 	 b and b � 	 c. Using Lemma
3.2, we obtain

a� aD = b� aD = b� a(aD )2 = b� b(aD )2 = b� bj (aD ) j +1 = c� bj (aD ) j +1 = c� aD

and

aaD = baD = ba(aD )2 = b2(aD )2 = bl+1 (aD ) l+1 = cbl (aD ) l+1 = cb(aD )2 = ca(aD )2 = caD :

Applying Theorem 3.3, we deduce thata � 	 c. �

In the following example, we show that the relation �� 	 " is not antisymmetric and so
it is not a partial order on the set of all (j; m )-core invertible elements inR.

Example 3.5. Let a =
�

0 1
0 0

�
and b =

�
0 0
2 0

�
2 C2� 2. Since aD = 0 = ( aj )y and

bD = 0 = ( bj )y, for j � 2, then a	
j;m = 0 and b	

j;m = 0 , which yield a	
j;m a = 0 = a	

j;m b =
aa	

j;m = ba	
j;m and bb	j;m = 0 = ab	

j;m = b	
j;m b = 0 = b	

j;m a. Thus, a � 	 b and b � 	 a, but
a 6= b.
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Abstract

In this paper, we analyze the non-selfadjoint Sturm-Liouville operator L de�ned in the
Hilbert space L 2(R; H ) of vector-valued functions which are strongly-measurable and
square-integrable inR. L is de�ned

L(y) = � y00+ Q(x)y; x 2 R;

for every y 2 L 2(R; H ) where the potential Q(x) is a non-selfadjoint, completely continuous
operator in a separable Hilbert spaceH for each x 2 R: We obtain the Jost solutions of
this operator and examine the analytic and asymptotic properties. Moreover, we �nd the
point spectrum and the spectral singularities ofL and also obtain the su�cient condition
which assures the �niteness of the eigenvalues and spectral singularities ofL .
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1. Introduction

Non-selfadjoint operators are seen in physical systems which do not involve the con-
servation of energy law. Some selfadjoint problems also give us non-selfadjoint operators
after separation of variables. The theory of non-selfadjoint operators has initially begun to
analyze ordinary di�erential equations. M.V. Keldysh played a signi�cant role to develop
a general theory for non-selfadjoint operators by inventing a new method for establishing
the resolvent of an arbitrary completely continuous, non-selfadjoint operator of �nite order
[16,17].

Spectral analysis of non-selfadjoint di�erential operators has been studied by M.A.
Naimark [24, 25]. In particular, he analyzed the non-selfadjoint Sturm-Liouville operator
de�ned by

l(y) = � y
00

+ p(x)y; 0 < x < 1 ; (1.1)

y0(0) � hy(0) = 0 ; (1.2)
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where p(x) is a complex-valued function satisfying
Z 1

0
(1 + t2)jp(t)jdt < 1 ; (1.3)

and h 2 C. Several authors investigated the non-selfadjoint Sturm-Liouville operator
de�ned by Equations (1.1) and (1.2) in detail [ 22� 25,28]. The results of Naimark [24,25]
have been generalized in [7,8] to the operator l0 generated inL 2(R) which is de�ned by

lo(y) = � y00+ q(x)y; x 2 R;

where the potential q is a complex-valued function. The authors generalized the results
of [24] and applied to the non-selfadjoint Schrödinger operator in the three-dimensional
space [13].

Non-selfadjoint Hamiltonians and complex extensions of Quantum Mechanics have been
studied by many mathematicans, recently. Moreover, spectral properties of the selfadjoint
matrix di�erential and di�erence equations have been examined [9, 10, 15]. For the non-
selfadjoint case, discrete spectrum and the spectral singularities of the matrix Sturm-
Liouville operator were investigated [4,11,26,27]. Further, the authors examined a system
of non-selfadjoint Sturm-Liouville equations [2,5,6].

B. M. Levitan et al. have studied the point spectrum of the following Sturm-Liouville
operator equation in detail [14,19� 21]. Let H be a separable Hilbert space andL 2 (R+ ; H )
denote the space of vector-valued functionsf (x) de�ned on (0; 1 ) which are strongly-
integrable and also square-integrable on(0; 1 ) i.e.,

Z 1

0
kf (x)k2 dx < 1 :

Consider the operator l1 de�ned on L 2 (R+ ; H ) by

l1(Y ) = � Y
00

+ Q(x)Y; 0 < x < 1 ; (1.4)

and the boundary condition Y(0) = 0 where Q(x) is a completely continuous, selfadjoint
operator de�ned on H for every x 2 (0; 1 ) : Equation (1.4) is called Sturm-Liouville
operator equation.

In our previous paper [3], we considered the non-selfadjoint analogue of the above prob-
lem and investigated the spectral properties of the non-selfadjoint Sturm-Liouville operator
equation on the half line on the contrary to [14, 19� 21]. We also generalized the results
in [2, 4, 11, 26, 27] by considering the coe�cients as operators not only �nite dimensional
matrices. In this study, we extend these results to the whole real axis. Explicitly, we focus
on the following non-selfadjoint operator.

AssumeH is a separable Hilbert space andH1 := L 2 (R; H ) denotes the space of vector-
valued funtions f (x) de�ned on R which are strongly-integrable and square-integrable.
Note that H1 is a Hilbert space with the inner product (see [29]);

(f; g )1 =
Z 1

�1
(f (x); g(x))H dx:

Let us consider the non-selfadjoint operatorL de�ned in H1;

L (y) = � y00+ Q(x)y; x 2 R; (1.5)

where the potential Q(x) is a non-selfadjoint, completely continuous operator inH for
each x 2 R: In this paper, we specify the domain ofL and express the Jost solutions.
Then, we �nd the discrete spectrum and the set of spectral singularities ofL by using the
properties of the Jost solutions. Finally, we prove that L has a �nite number of eigenvalues
and spectral singularities.
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The domain D(L) of L is the subspace consisting of ally 2 H1 which satis�es the
following conditions;

(i) y is twice strongly-di�erentiable,
(ii) L (y) 2 H1:

Let us consider the eigenvalue equation;

� y
00

+ Q(x)y = � 2y; x 2 R: (1.6)

2. The Jost solutions of ( 1.6)

We shall also focus on the equation

� Y
00

+ Q(x)Y = � 2Y; x 2 R; (2.1)

where Y(x) is an operator-valued function i.e,Y (x) is an operator in H for each x 2 R:

Lemma 2.1. Every sequence of solutions of Equation(1.6) can be represented as an
operator-valued function which satis�es Equation (2.1). Conversely, one can construct a
sequence of vector-valued functions which satisfy Equation(1.6) for a given operator-valued
solution of Equation (2.1).

Proof. SinceH is a separable Hilbert space, there exists an orthonormal basis(un )n2 N :
Suppose vector-valued functions(yn (x))n2 N satisfy Equation (1.6). We can construct an
operator-valued function Y(x) such that Y (x)un = yn (x) for every n 2 N: It is clear that
Y (x) satis�es Equation (2.1).
Conversely, suppose operator-valued functionY(x) satis�es Equation (2.1). Let yn (x) =
Y(x)un for every n 2 N: Then, it is clear that (yn (x)) satis�es Equation (1.6) for every
n 2 N: �

As a result of this one to one correspondence, we can focus on the solutions of only one
of the Equations (1.6)-(2.1).

We shall use the notations;

� + (x) =
Z 1

x
kQ(t)k dt; � +

1 (x) =
Z 1

x
� + (t)dt;

� � (x) =
Z x

�1
kQ(t)k dt; � �

1 (x) =
Z x

�1
� � (t)dt:

Suppose that the condition
Z 1

�1
(1 + jt j) kQ(t)k dt < 1 ; (2.2)

holds. Then, Equation (2.1) has operator solutionsE + (x; � ) and F � (x; � ) satisfying the
initial conditions;

lim
x!1

e� i�x E + (x; � ) = I; Im� � 0; (2.3)

and
lim

x!�1
ei�x F � (x; � ) = I; Im� � 0; (2.4)

respectively. Indeed, consider the integral equation

E + (x; � ) = ei�x I +
1
�

Z 1

x
sin (� (t � x)) Q(t)E + (t; � )dt; Im� � 0;

which is easily seen to be a solution of Equation (2.1) satisfying (2.3). Similarly, if we
de�ne

F � (x; � ) = E + (� x; � ); Im� � 0;
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it easily follows that F � (x; � ) satis�es (2.4). Under the condition (2.2), the solution
E + (x; � ) can be represented (see [1]);

E + (x; � ) = ei�x I +
Z 1

x
ei�t K + (x; t )dt; Im� � 0: (2.5)

Let us consider the equation;

� Z 00+ ZQ(x) = � 2Z; x 2 R; (2.6)

where Z (x) is an operator-valued function. Similarly, Equation (2.6) has an operator
solution E � (x; � ) which satis�es the initial condition;

lim
x!�1

ei�x E � (x; � ) = I; Im� � 0;

and has the representation

E � (x; � ) = e� i�x I +
Z x

�1
e� i�t K � (x; t )dt; Im� � 0:

Further, the operator-valued kernels K
+
� (x; t ) are di�erentiable with respect to x and t

and satisfy





K

+
� (x; t )







�
1
2

�
+
� (

x + t
2

) exp

"

�
+
�

1 (x) � �
+
�

1 (
x + t

2
)

#

; (2.7)






K

+
�
x (x; t )

+
�

1
4

Q(
x + t

2
)







�
1
2

�
+
�

1 (x)�
+
� (

x + t
2

) exp �
+
�

1 (x); (2.8)






K

+
�
t (x; t )

+
�

1
4

Q(
x + t

2
)







�
1
2

�
+
�

1 (t)�
+
� (

x + t
2

) exp �
+
�

1 (t); (2.9)

As a result, the solutions E + (x; � ) and E � (x; � ) are analytic for Im� > 0 and continuous
for Im� � 0. E + (x; � ) and E � (x; � ) are called the Jost solutions of Equation (1.6). The
proofs of above results are very similar to the matrix coe�cient case which have been
obtained in [1,4]. In addition, we obtained analogous properties in our previous paper [3].
Hence, we omitted the proofs.

Lemma 2.2. Let Y (x) be a solution of Equation(2.1) and Z (x) be a solution of Equation
(2.6). Then, the Wronskian W [Y; Z] (x) := Z

0
(x)Y (x) � Z (x)Y

0
(x) is independent ofx:

Proof. We have

� Y
00

+ Q(x)Y = � 2Y;

� Z
00

+ ZQ(x) = � 2Z:

If we multiply the �rst equality from the left with Z and the second equality from the
right with Y and subtract them, we have

Z
00
(x)Y (x) � Z (x)Y

00
(x) = 0 ;

which implies W [Y; Z] (x) is constant and hence independent of the variablex: �

Let us de�ne the function

D(� ) := W
h
E � (x; � ); E + (x; � )

i
; Im� � 0:

Since the Wronskian ofE + (x; � ) and E � (x; � ) is independent ofx, D (� ) is a function of
� which is also analytic for Im� > 0 and continuous for Im� � 0: The function D(� ) is
called the Jost function of Equation (1.6).
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Theorem 2.3. The function D(� ) satis�es

D(� ) = 2 i�I � 2K + (0; 0) � 2K � (0; 0) +
Z 1

0
ei�t F (t)dt; (2.10)

where
F (t) = K +

x (0; t) � K �
x (0; � t) � K � (0; 0)K + (0; t) � K + (0; 0)K � (0; � t)

+ K � (0; � t) � K +
x (0; t) � K �

x (0; � t) � K + (0; t) + K �
t (0; � t)

� K +
t (0; t);

(2.11)

and F 2 L 1 (R; H ) where "� " is the convolution operation.

Proof. Since the Wronskian ofE + (x; � ) and E � (x; � ) is independent ofx, we put x = 0
and obtain

D(� ) = W
h
E � (x; � ); E + (x; � )

i
= E +

x (� )E � (� ) � E + (� )E �
x (� ):

By using the integral representations ofE + (x; � ) and E � (x; � ) we get (2.10) and (2.11).
From (2.7)-(2.9) we haveF 2 L 1 (R; H ) : �

Theorem 2.4. The following asymptotic relations hold;

D (� ) = 2 i�I � 2K + (0; 0) � 2K � (0; 0) + o(1); Im� � 0; j� j ! 1 ; (2.12)

D(� ) = 2 i�I + O(1); Im� � 0; j� j ! 1 : (2.13)

Proof. Let � 2 R: By Riemann-Lebesgue Lemma for Fourier transforms [18] we have
Z 1

0
ei�t F (t)dt = o(1); � 2 R; j� j ! 1 : (2.14)

Now, let Im� > 0: Lebesgue Theorem [18] implies
Z 1

0
ei�t F (t)dt = o(1); Im� > 0; j� j ! 1 : (2.15)

If we use (2.14), (2.15) we get (2.12). The proof is similar for (2.13). �

3. Point spectrum and spectral singularities of L

Now, we introduce the point spectrum and the set of spectral singularities ofL according
to the de�nitions given in [ 22� 24]

� d(L ) =
n

� 2 : Im� > 0; D (� ) is not invertible
o

;

� ss(L ) =
n

� 2 : � 2 R r f 0g; D (� ) is not invertible
o

:

Now, we try to examine the eigenvalues ofL by employing the results in [17]. Let us recall;

D (� ) = 2 i�I � 2K + (0; 0) � 2K � (0; 0) +
Z 1

0
ei�t F (t)dt; Im� � 0: (3.1)

Let

A(� ) : =
1

2i�

�
� 2K + (0; 0) � 2K � (0; 0) +

Z 1

0
ei�t F (t)dt

�
;

G(� ) : =
1

2i�
D (� ):

Then,
G(� ) = I + A(� ); Im� � 0;

and for � 6= 0 ; it follows D(� ) is invertible i� G(� ) is invertible. Hence

� d(L ) =
n

� 2 : Im� > 0; G(� ) is not invertible
o

;

� ss(L ) =
n

� 2 : � 2 R r f 0g; G(� ) is not invertible
o

:
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Let us de�ne M 1 := f � : Im� > 0; G(� ) is not invertible g: It follows � d(L ) =
�
� 2 : � 2 M 1

	
.

Since
R1

�1 (1 + jt j) kQ(t)k dt < 1 and Q(x) is completely continuous operator for each
x 2 R; it follows F (t) is completely continuous operator for each0 < t < 1 and as a result
A(� ) is completely continuous forIm� > 0: Also, sinceD(� ) is analytic for Im� > 0; A(� )
is also analytic in the same domain. Now, we can use the results in [17].

De�nition 3.1. If
(I � R) ( I + A) = I;

holds, then the operator R is called the resolvent of the operatorA, [17].

Let us denote the resolvent ofA(� ) by R(� ). It follows

I � R(� ) = ( I + A(� )) � 1 = ( G(� )) � 1 :

If I � R(� ) exists at least for one� which meansG(� ) is invertible, this implies I � R(� )
exists on the domain C+ := f z 2 C : Im� > 0g except for a set of isolated points, and
also I � R(� ) is a meromorphic operator function in the same domain [17]. It is obvious
that M 1 6= C+ . This implies there exists at least one� such that I � R(� ) is de�ned.
[17] implies that I � R(� ) should exist on the domain C+ except for a set of isolated
points. These isolated points are obviously the eigenvalues ofL . Moreover, I � R(� ) is a
meromorphic operator function on C+ . Therefore, we can expressI � R(� ) as a ratio of
two analytical functions in the domain C+ as;

(G(� )) � 1 = I � R(� ) =
S(� )
d(� )

; (3.2)

where S(� ) is an operator function and d(� ) is a scalar function on C+ : Moreover, the
above isolated points are poles of the functionI � R(� ) and they are the zeros of the
function d(� ): As a result, it follows

M 1 = f � : Im� > 0; d(� ) = 0 g: (3.3)

Theorem 3.2. If the condition (2.2) holds, then � d(L ) is a bounded and countable set.
Further, the limit points of � d(L ) should lie in a bounded interval of the real axis.

Proof. The relation (2.12) implies

G(� ) = I + o(1) ; Im� � 0; j� j ! 1 ;

which means for su�ciently large � 2 C+ , G(� ) ! I and thus G(� ) is invertible. Therefore,
M 1 is bounded. Since the functiond(� ) is analytic, its zeros are isolated. This impliesM 1
is countable. Further, the limit points of the zeros of d(� ) should lie in an interval of the
real line [12]. The proof is complete since

� d(L ) =
n

� 2 : � 2 M 1

o
:

�

Now, let us assume that the condition
Z 1

�1
e� jt j kQ(t)k dt < 1 ; � > 0; (3.4)

holds.

Theorem 3.3. L has a �nite number of eigenvalues.

Proof. From the equalities (2.7)-(2.9) and (3.4) we have





K

+
� (x; t )







;






K

+
�
x (x; t )







;






K

+
�
t (x; t )







� cexp
�

� � (
x + t

2
)
�

;
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and hence
kF (t)k � cexp

�
� � (

t
2

)
�

; 8t 2 [0; 1 ) ;

where c is a positive constant. Further,

kF (t)k
�
�
�ei�t

�
�
� � cexp� t( �

2 +Im � ) ; 8t 2 [0; 1 ) ;

and thus 




Z 1

0
ei�t F (t)dt




 �

Z 1

0

�
�
�ei�t

�
�
� kF (t)k dt

�
Z 1

0
cexp� t( �

2 +Im � ) dt;
Z 1

0
cexp� t( �

2 +Im � ) dt < 1 , Im� +
�
2

> 0:

The Uniform Convergence Test implies that the integral
R1

0 ei�t F (t)dt is uniformly conver-
gent in the domain Im� > � �

2 : This implies D(� ) and alsoG(� ) have analytic continuations
to the domain Im� > � �

2 : Since the analytic continuation is unique, it follows

(G(� )) � 1 = I � R(� ) =
S(� )
d(� )

; Im� > �
�
2

:

Let us recall M 1 = f � : Im� > 0; d(� ) = 0 g, � d(L ) =
�
� 2 : � 2 M 1

	
and M 1 is bounded.

Suppose that M 1 is not �nite. Let us recall Bolzano-Weierstrass Theorem which states
that each bounded sequence inR has a convergent subsequence. Bolzano-Weierstrass
Theorem implies that M 1 must have one limit point. Also, Theorem 3.2 states that the
limit points of M 1 can only lie on the real axis. However, sinced(� ) is analytic in the
domain Im� > � �

2 , the limit points of M 1 should be on the boundary of this domain [12].
This contradicts with the assumption � > 0: Thus, M 1 and � d(L ) are �nite. �

Let M 2 := f � : � 2 R; G(� ) is not invertible g. It is obvious that

� ss(L ) =
n

� 2 : � 2 M 2

o
r f 0g:

From the representation (3.2), we have

G(� )
d(� )

S(� ) = I; � 2 C+ ;

and this implies S(� ) is invertible i� G(� ) is invertible or equivalently d(� ) 6= 0 for � 2 C+ .
If d(� ) 6= 0 it follows

(S(� )) � 1 =
G(� )
d(� )

; � 2 C+ ;

and also
G(� ) = d(� ) (S(� )) � 1 ; � 2 C+ : (3.5)

SinceG(� ) is continuous on the real line, Equation (3.5) suggests that the functionsS(� )
and d(� ) are continuous on the real line. Hence, we can extend the representation (3.2)
continuously to the real line and obtain

(G(� )) � 1 =
S(� )
d(� )

; � 2 C+ : (3.6)

(3.6) implies that G(� ) is invertible i� d(� ) 6= 0 for � 2 R. Thus, we have

M 2 = f � 2 R : d(� ) = 0 g:
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Theorem 3.4. M 2 is compact and has zero Lebesgue measure under the condition (2.2).

Proof. Theorem 3.2 implies M 2 is bounded. We only have to show thatM 2 is closed. Let
f � ng � M 2 such that � n ! � 0: f � ng � M 2 implies � n 2 R and G(� n ) � 1 doesn't exist for
n 2 N: Further, � n ! � 0 implies � 0 2 R: We have G(� ) is a continuous operator function
on the real line. Now, � n ! � 0 suggests thatG(� n ) ! G(� 0) where the latter convergence
is strong.

Let GL(H ) := f A : A is invertible, bounded, linear operator on H g. It is well known
that GL(H ) is an open subset of the spaceB (H ) of bounded, linear operators onH . It
follows B (H ) nGL(H ) is a closed set. This impliesG(� 0) 2 B (H ) nGL(H ) and � 0 2 M 2.
Finally, Privalov's Theorem states that M 2 has zero Lebesgue measure [12] . �

Corollary 3.5. � ss(L ) is bounded and has zero Lebesgue measure, under the condition
(2.2).

Theorem 3.6. L has a �nite number of spectral singularities, under the condition (3.4).

Proof. It can be shown similarly (see the proof of Theorem3.3) that G(� ) has an analytic
continuation to the domain Im� > � �

2 for arbitrary � > 0. Since this analytic continuation
is unique, it follows

(G(� )) � 1 = I � R(� ) =
S(� )
d(� )

; Im� > �
�
2

:

Suppose thatM 2 is not �nite. Since M 2 is bounded (see Theorem3.2), Bolzano-Weierstrass
Theorem implies that M 2 has a limit point. This limit point as a zero of the analytic
function d(� ) should lie on the boundary of the domain Im� > � �

2 [12]. It contradicts
with � > 0: �
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1. Introduction

Let A be the class of analytic functions in the open unit diskD = f z 2 C : jzj < 1g and
let S be the class of functionsf that are analytic, univalent in D and are of the form

f (z) = z +
1X

k=2

akzk : (1.1)

The Koebe one-quarter theorem assures that the image of unit diskD under every
univalent function f 2 A contains a disk of radius1=4. Thus every univalent function f
has an inversef � 1 satisfying

f � 1(f (z)) = z (z 2 D) and f (f � 1(w)) = w; (jwj < r 0; r0 � 1=4) :

Furthermore, the Taylor-Maclaurin series of f � 1 is given by

f � 1(w) = w � a2w2 + (2 a2
2 � a3)w3 � � � � : (1.2)

A function f 2 A is said to be bi-univalent in D if f is univalent and f � 1 has univalent
analytic continuation, which we denote by g, to the unit disk D. Let � denote the class
of bi-univalent functions de�ned in the unit disk D. Coe�cient problem for bi-univalent
functions were recently investigated by several authors [1,4� 8,15� 17,19,20]. A function f 2
A is said to be subordinate to a functionh 2 A; denoted byf � h; if there exists an analytic
function w 2 B0, where B0 := f w : w (0) = 0 ; jw (z)j < 1; z 2 Dg such that f (z) =
h(w(z)) . We let S� consist of starlike functions f 2 A, that is, Ref zf 0(z)� f (z)g > 0 in D
and C consist of convex functionsf 2 A, that is, 1 + Ref zf 00(z)� f 0(z)g > 0 in D. Ma and
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Minda [12] uni�ed various subclasses of starlike and convex functions for which either of the
quantity zf 0(z)� f (z) or 1+ zf 00(z)� f 0(z) is subordinate to a more general superordinate
function. For this purpose, they considered an analytic function' with positive real part in
the unit disk D and normalized by ' (0) = 1 and ' 0(0) > 0. The class of Ma-Minda starlike
functions consists of functionsf 2 A satisfying the subordination zf 0(z)� f (z) � ' (z).
Similarly, the class of Ma-Minda convex functions consists of functionsf 2 A satisfying
the subordination 1+ zf 00(z)� f 0(z) � ' (z). Extensions of the above two classes (see [14])
are

S� ( ; ' ) �
�

f 2 A : 1 +
1


�
zf 0(z)
f (z)

� 1
�

� ' (z);  2 Cn f 0g
�

and

C( ; ' ) �
�

f 2 A : 1 +
1


�
zf 00(z)
f 0(z)

�
� ' (z);  2 Cn f 0g

�
:

In literature, the functions belonging to these classes are called Ma-Minda starlike and
convex of complex order ( 2 C� f 0g), respectively. A function f is bi-starlike of Ma-
Minda type of complex order  ( 2 C� f 0g) and bi-convex of Ma-Minda type of complex
order  ( 2 C� f 0g) if both f and g are ,respectively, Ma-Minda starlike and convex of
complex order  ( 2 C� f 0g). The classes consisting of bi-starlike of Ma-Minda type
of complex order  ( 2 C� f 0g) and bi-convex of Ma-Minda type of complex order 
( 2 C� f 0g) are denoted byS�

� ( ; ' ) and C� ( ; ' ), respectively. As a special case = 1
the classesS�

� ( ; ' ) and C� ( ; ' ) reduce to bi-starlike of Ma-Minda type and bi-convex of
Ma-Minda type functions are denoted by S�

� (' ) and C� (' ), respectively.
In this paper, we consider more general classS� (�;  ; ' ) for 0 � � � 1,  2 Cn f 0g which

was investigated by Deniz [5] wherein he obtained the bounds fora2 and a3. This motivated
us to study the Fekete-Szegö inequality to the classS� (�;  ; ' ): Recently, some authors
have investigated the Fekete-Szegö problem for various subclasses of� (see [3,9,13,21,22]).

2. Coe�cient estimates

Throughout this paper ' denotes an analytic univalent function in D with positive real
part and normalized by ' (0) = 1 ; ' 0(0) > 0. Such a function has series expansion of the
form

' (z) = 1 + B1z + B2z2 + B3z3 + ::: (B1 > 0) : (2.1)

De�nition 2.1. For 0 � � � 1 and  2 Cn f 0g, the classS(�;  ; ' ) consists of functions
f 2 A satisfying

1 +
1


 
zf 0(z) + �z 2f 00(z)

(1 � � )f (z) + �zf 0(z)
� 1

!

� ' (z) (z 2 D):

The classS� (�;  ; ' ) consists of functionsf 2 � such that f; g 2 S(�;  ; ' ) where g is the
analytic continuation of f � 1 to the unit disk D.

The class S(�;  ; ' ) was introduced by [18]. Motivated by this class the second au-
thor [5] de�ned and studied the classS� (�;  ; ' ); which is called the class of generalized
bi-subordinate functions of complex order  and type �: As special cases of the class
S� (�;  ; ' ), we have S� (0;  ; ' ) � S�

� ( ; ' ) and S� (1;  ; ' ) � C� ( ; ' ).
The classS� (�;  ; ' ) includes many earlier classes, which are mentioned below:

S� (0; 1; ' ) � S�
� (' ) and S� (1; 1; ' ) � C� (' ); are classes of Ma-Minda bi-starlike and Ma-

Minda bi-convex functions, respectively, introduced and studied in [11].
S� ((0; 1; (1 + Az)� (1 + Bz)) � S� [A; B ] and S� (1; 1; (1 + Az)� (1 + Bz)) � C� [A; B ]

(� 1 � B < A � 1) are, respectively, the classes of Janowski bi-starlike and bi-convex func-
tions. Additionally, for 0 � � < 1; S� [1 � 2�; 1] � S� (� ) and C� [1 � 2�; 1] � C� (� ) are,
respectively, the classes of bi-starlike and bi-convex functions of order� introduced and
studied in [2].
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For 0 < � � 1; S�

�
0; 1;

�
1+ z
1� z

� �
�

� SS�
� (� ) and S�

�
1; 1;

�
1+ z
1� z

� �
�

� SC�
� (� ) are,

respectively, classes of strongly bi-starlike and strongly bi-convex functions of order�
introduced and studied in [2].

For  2 C� f 0g; S� (0;  ; (1 + z)� (1 � z)) � S�
� [ ] and S� (1;  ; (1 + z)� (1 � z)) � C� [ ]

are classes of bi-starlike and bi-convex functions of complex order, respectively.
To prove our next theorems, we shall need the following well-known lemma (see [10]).

Lemma 2.2 ([10]). Let the function w 2 B0 be given by

w(z) = c1z + c2z2 + � � � (z 2 D) ;

then for by every complex numbers;
�
�
�c2 � sc2

1

�
�
� � 1 + ( jsj � 1) jc1j2 :

In the following theorem, we consider functional
�
�a3 � �a 2

2
�
� for  nonzero complex num-

ber and � 2 C:

Theorem 2.3. Let the function f given by (1.1) be in the S� (�;  ; ' ). For  2 C� f 0g
and � 2 C; we have

ja2j �
j j B1

1 + �
; (2.2)

ja3j �
j j jB1j

4 (1 + 2� )
maxf 2; (jsj + jt j)g (2.3)

and
�
�
�a3 � �a 2

2

�
�
� �

8
<

:

B 1 j  j
2(1+2 � ) if L � 2

B 1 j  j
4(1+2 � ) L if L > 2

(2.4)

where s = B 2
B 1

� 4B 1  (1+2 � )
(1+ � )2 ; t = B 2

B 1
and L =

�
�
� B 2

B 1
+ (1 � � ) 4B 1  (1+2 � )

(1+ � )2

�
�
� +

�
�
� B 2

B 1

�
�
� :

Proof. Since f 2 S� (�;  ; ' ), there exists two analytic functions u; v : D ! D, with
u(0) = 0 = v(0), such that

1 +
1


 
zf 0(z) + �z 2f 00(z)

(1 � � )f (z) + �zf 0(z)
� 1

!

= ' (u(z)) ( z 2 D) (2.5)

and

1 +
1


 
wg0(w) + �w 2g00(w)

(1 � � )g(w) + �wg 0(w)
� 1

!

= ' (v(w)) : (2.6)

De�ne the functions u and v by

u(z) = c1z + c2z2 + � � � and v(w) = d1w + d2w2 + � � � : (2.7)

Using (2.1) with ( 2.7), it is evident that

' (u(z)) = 1 + ( B1c1)z + ( B1c2 + B2c2
1)z2 + � � � (2.8)

and
' (v(w)) = 1 + ( B1d1)w + ( B1d2 + B2d2

1)w2 + � � � : (2.9)

Also, using (1.1), we get

1 +
1


�
zf 0(z) + �z 2f 00(z)

(1 � � )f (z) + �zf 0(z)
� 1

�
= 1 +

(1 + � ) a2


z +

"
2 (1 + 2� ) a3 � (1 + � )2 a2

2



#

z2 + � � �

(2.10)



1698 S. Kaz�mo§lu, E. Deniz

and using (1.2), we get

1 +
1


 
wg0(w) + �w 2g00(w)

(1 � � )g(w) + �wg 0(w)
� 1

!

= 1 �
(1 + � ) a2


w

"
� 2 (1 + 2� ) a3 +

�
3 + 6� � � 2�

a2
2



#

w2 + � � � : (2.11)

Equating coe�cients of right sides of equations (2.8) with ( 2.10) and (2.9) with ( 2.11)
yield

(1 + � ) a2


= B1c1;

2 (1 + 2� ) a3 � (1 + � )2 a2
2


= B1c2 + B2c2

1 (2.12)

and
� (1 + � ) a2


= B1d1;

� 2 (1 + 2� ) a3 +
�
3 + 6� � � 2�

a2
2


= B1d2 + B2d2

1 (2.13)

so that, on account of (2.12) and (2.13)

c1 = � d1; (2.14)

a2 =
B 1

1 + �
c1 (2.15)

and
a3 = a2

2 +


4 (1 + 2� )

h
B1c2 + B2c2

1 � B1d2 � B2d2
1

i
: (2.16)

Taking into account (2.14), (2.15), (2.16) and the well known estimate jc1j � 1 of the
Schwarz lemma, we get

ja2j =
�
�
�
�

B 1

1 + �
c1

�
�
�
� �

j j B1

1 + �
(2.17)

and from Lemma 2.2,

ja3j =
�
�
�
�a

2
2 +


4 (1 + 2� )

h
B1c2 + B2c2

1 � B1d2 � B2d2
1

i �
�
�
�

=

�
�
�
�
�

 2B 2
1

(1 + � )2 c2
1 +


4 (1 + 2� )

h�
B1c2 � B2c2

1

�
�

�
B1d2 � B2d2

1

�i
�
�
�
�
�

=

�
�
�
�
�

B 1

4 (1 + 2� )

("

c2 �

 
B2

B1
�

4B 1 (1 + 2 � )

(1 + � )2

!

c2
1

#

�
�
d2 �

B2

B1
d2

1

� ) �
�
�
�
�

�
j j B1

4 (1 + 2� )

( �
�
�
�
�
c2 �

 
B2

B1
�

4B 1 (1 + 2 � )

(1 + � )2

!

c2
1

�
�
�
�
�
+

�
�
�
�d2 �

B2

B1
d2

1

�
�
�
�

)

�
j j B1

4 (1 + 2� )

n
1 + ( jsj � 1)

�
�
�c2

1

�
�
� + 1 + ( jt j � 1)

�
�
�c2

1

�
�
�
o

=
j j B1

4 (1 + 2� )

n
2 + ( jsj + jt j � 2)

�
�
�c2

1

�
�
�
o

:

Thus, using jc1j � 1 we have the desired estimate forja3j:

ja3j �
j j jB1j

4 (1 + 2� )
maxf 2; (jsj + jt j)g;

where s = B 2
B 1

� 4B 1  (1+2 � )
(1+ � )2 and t = B 2

B 1
:

To �nd an estimate for
�
�a3 � �a 2

2
�
�, we expressa3 � �a 2

2 in terms of ci and di . Using the
equality (2.16), we have

a3 � �a 2
2 = (1 � � ) a2

2 +


4 (1 + 2� )

h
B1c2 + B2c2

1 � B1d2 � B2d2
1

i
:
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Therefore from Lemma2.2, we obtain

�
�
�a3 � �a 2

2

�
�
� =

�
�
�
�(1 � � ) a2

2 +


4 (1 + 2� )

h
B1c2 + B2c2

1 � B1d2 � B2d2
1

i �
�
�
�

=

�
�
�
�
�

B 1

4 (1 + 2� )

("

c2 �

 
B2

B1
� (1 � � )

4B 1 (1 + 2 � )

(1 + � )2

!

c2
1

#

�
�
d2 �

B2

B1
d2

1

� ) �
�
�
�
�

�
j j B1

4 (1 + 2� )

(

2 +

 �
�
�
�
�
B2

B1
� (1 � � )

4B 1 (1 + 2 � )

(1 + � )2

�
�
�
�
�
+

�
�
�
�
B2

B1

�
�
�
� � 2

! �
�
�c2

1

�
�
�

)

:(2.18)

As a result of this, from jc1j � 1 we obtain

�
�
�a3 � �a 2

2

�
�
� �

8
<

:

B 1 j  j
2(1+2 � ) if L < 2;

B 1 j  j
4(1+2 � ) L if L � 2;

where L =
�
�
� B 2

B 1
+ (1 � � ) 4B 1  (1+2 � )

(1+ � )2

�
�
� +

�
�
� B 2

B 1

�
�
� :

Thus the proof is completed. �

We next consider the cases and � are real.

Theorem 2.4. Let the function f given by (1.1) be in the S� (�;  ; ' ). For  > 0 and
� 2 R; we have

(1) If jB2j � B1; then

�
�
�a3 � �a 2

2

�
�
� �

8
<

:

 jB 2 j
2(1+2 � ) � (� � 1)  2B 2

1
(1+ � )2 if � � 1

 jB 2 j
2(1+2 � ) + ( � � 1)  2B 2

1
(1+ � )2 if � > 1

:

(2) If jB2j < B 1; then

�
�
�a3 � �a 2

2

�
�
� �

8
>>><

>>>:

 jB 2 j
2(1+2 � ) � (� � 1)  2B 2

1
(1+ � )2 if � � 1 � F

B 1
2(1+2 � ) if 1 � F <� < 1 + F

 jB 2 j
2(1+2 � ) + ( � � 1)  2B 2

1
(1+ � )2 if � � 1 + F

where F = (1+ � )2 (B 1 �j B 2 j)
2B 2

1 (1+2 � ) :

Proof. Using (2.18) and Lemma 2.2, we obtain

�
�
�a3 � �a 2

2

�
�
� =

�
�
�
�
�

B 1

4 (1 + 2� )

("

c2 �

 
B2

B1
� (1 � � )

4B 1 (1 + 2 � )

(1 + � )2

!

c2
1

#

�
�
d2 �

B2

B1
d2

1

� ) �
�
�
�
�

�
B 1

4 (1 + 2� )

(

2 +

 �
�
�
�
�
B2

B1
� (1 � � )

4B 1 (1 + 2 � )

(1 + � )2

�
�
�
�
�
+

�
�
�
�
B2

B1

�
�
�
� � 2

! �
�
�c2

1

�
�
�

)

�
B 1

2 (1 + 2� )
+

(
 (jB2j � B1)

2 (1 + 2� )
+ j� � 1j

 2B 2
1

(1 + � )2

) �
�
�c2

1

�
�
� : (2.19)

Now, the proof will be presented in two cases:
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Firstly, we consider the casejB2j � B1:
If � � 1, then using (2.19) and jc1j � 1, we obtain

�
�
�a3 � �a 2

2

�
�
� �

B 1

2 (1 + 2� )
+

(
 (jB2j � B1)

2 (1 + 2� )
+ (1 � � )

 2B 2
1

(1 + � )2

) �
�
�c2

1

�
�
�

�
B 1

2 (1 + 2� )
+

(
 (jB2j � B1)

2 (1 + 2� )
+ (1 � � )

 2B 2
1

(1 + � )2

)

=
 jB2j

2 (1 + 2� )
� (� � 1)

 2B 2
1

(1 + � )2 :

If � > 1, then using (2.19) and jc1j � 1, we obtain
�
�
�a3 � �a 2

2

�
�
� �

B 1

2 (1 + 2� )
+

(
 (jB2j � B1)

2 (1 + 2� )
+ ( � � 1)

 2B 2
1

(1 + � )2

) �
�
�c2

1

�
�
�

�
B 1

2 (1 + 2� )
+

(
 (jB2j � B1)

2 (1 + 2� )
+ ( � � 1)

 2B 2
1

(1 + � )2

)

=
 jB2j

2 (1 + 2� )
+ ( � � 1)

 2B 2
1

(1 + � )2 :

Finally, we consider the casejB2j < B 1: By using (2.19) and jc1j � 1, we obtain the
following results according to the cases of� and F.
For � � 1 � F; we have

�
�
�a3 � �a 2

2

�
�
� �

B 1

2 (1 + 2� )
+

(
 (jB2j � B1)

2 (1 + 2� )
+ (1 � � )

 2B 2
1

(1 + � )2

) �
�
�c2

1

�
�
�

�
B 1

2 (1 + 2� )
+

(
 (jB2j � B1)

2 (1 + 2� )
+ (1 � � )

 2B 2
1

(1 + � )2

)

=
 jB2j

2 (1 + 2� )
� (� � 1)

 2B 2
1

(1 + � )2 ;

and for 1 � F <� � 1; we yield
�
�
�a3 � �a 2

2

�
�
� �

B 1

2 (1 + 2� )
+

(
 (jB2j � B1)

2 (1 + 2� )
+ (1 � � )

 2B 2
1

(1 + � )2

) �
�
�c2

1

�
�
�

�
B 1

2 (1 + 2� )
:

Similarly for 1 < � < 1 + F; we obtain
�
�
�a3 � �a 2

2

�
�
� �

B 1

2 (1 + 2� )
+

(
 (jB2j � B1)

2 (1 + 2� )
+ ( � � 1)

 2B 2
1

(1 + � )2

) �
�
�c2

1

�
�
�

�
B 1

2 (1 + 2� )
:

Finally for � � 1 + F; we have
�
�
�a3 � �a 2

2

�
�
� �

B 1

2 (1 + 2� )
+

(
 (jB2j � B1)

2 (1 + 2� )
+ ( � � 1)

 2B 2
1

(1 + � )2

) �
�
�c2

1

�
�
�

�
B 1

2 (1 + 2� )
+

(
 (jB2j � B1)

2 (1 + 2� )
+ ( � � 1)

 2B 2
1

(1 + � )2

)

=
 jB2j

2 (1 + 2� )
+ ( � � 1)

 2B 2
1

(1 + � )2 :
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Thus the proof is completed. �

Finally, we consider the cases of nonzero complex number and� 2 R:

Theorem 2.5. Let the function f given by (1.1) be in the S� (�;  ; ' ). For  2 C� f 0g
and � 2 R; we have

(1) If (1+ jsin � j) jB 2 j
2B 1

� 1; then

�
�
�a3 � �a 2

2

�
�
� �

8
><

>:

j  j2B 2
1

(1+ � )2 (1 � � � < (k1)) + j  jj B 2 j(1+ jsin � j)
4(1+2 � ) if � � 1 � < (k1)

j  jj B 2 j(1+ jsin � j)
4(1+2 � ) � j  j2B 2

1
(1+ � )2 (1 � � � < (k1)) if � > 1 � < (k1)

:

(2) If (1+ jsin � j) jB 2 j
2B 1

< 1; then

�
�
�a3 � �a 2

2

�
�
� �

8
>>>>><

>>>>>:

j  j2B 2
1

(1+ � )2 (1 � � � < (k1)) + j  jj B 2 j(1+ jsin � j)
4(1+2 � ) if � � 1 � < (k1) + N

j  jB 1
2(1+2 � ) if 1 � < (k1) + N<� < 1 � < (k1) � N

j  jj B 2 j(1+ jsin � j)
4(1+2 � ) � j  j2B 2

1
(1+ � )2 (1 � � � < (k1)) if � � 1 � < (k1) � N

where k1 = B 2 (1+ � )2ei�

4B 2
1 j  j(1+2 � ) ; j j = e i� and N = (1+ � )2 [jB 2 j(1+ jsin � j)� 2B 1 ]

4B 2
1 j  j(1+2 � ) :

Proof. Let f 2 S� (�;  ; ' ): By using (2.18) and Lemma 2.2, then we obtain
�
�
�a3 � �a 2

2

�
�
� �

j j B1

4 (1 + 2� )

(

2 +

 �
�
�
�
�
B2

B1
� (1 � � )

4B 1 (1 + 2 � )

(1 + � )2

�
�
�
�
�
+

�
�
�
�
B2

B1

�
�
�
� � 2

! �
�
�c2

1

�
�
�

)

=
j j B1

2 (1 + 2� )
+

j j2 B 2
1

(1 + � )2

�

" �
�
�
�
�
(1 � � ) �

B2 (1 + � )2

4B 2
1  (1 + 2 � )

�
�
�
�
�
+

(jB2j � 2B1) (1 + � )2

4B 2
1 j j (1 + 2 � )

# �
�
�c2

1

�
�
� :

Taking j j = e i� , k1 = B 2 (1+ � )2ei�

4B 2
1 j  j(1+2 � ) and l1 = (jB 2 j� 2B 1 )(1+ � )2

4B 2
1 j  j(1+2 � ) , for B1, B2 2 R and B1 > 0;

we rewrite
�
�
�a3 � �a 2

2

�
�
� �

j j B1

2 (1 + 2� )
+

j j2 B 2
1

(1 + � )2 (j1 � � � k1j + l1)
�
�
�c2

1

�
�
� (2.20)

=
j j B1

2 (1 + 2� )
+

j j2 B 2
1

(1 + � )2 (j1 � � � < (k1) � i (Im (k1)j + l1)
�
�
�c2

1

�
�
�

�
j j B1

2 (1 + 2� )
+

j j2 B 2
1

(1 + � )2

 

j1 � � � < (k1)j +
jB2j (1 + � )2 jsin � j

4B 2
1 j j (1 + 2 � )

+ l1

! �
�
�c2

1

�
�
�

=
j j B1

2 (1 + 2� )
+

"
j j2 B 2

1

(1 + � )2 j1 � � � < (k1)j +
j j [jB2j (1 + jsin � j) � 2B1]

4 (1 + 2� )

# �
�
�c2

1

�
�
� :

Firstly, we consider the case (1+ jsin � j) jB 2 j
2B 1

� 1:
Let � � 1 � < (k1). Then from (2.20) and jc1j � 1, we obtain
�
�
�a3 � �a 2

2

�
�
� �

j j B1

2 (1 + 2� )
+

"
j j2 B 2

1

(1 + � )2 j1 � � � < (k1)j +
j j [jB2j (1 + jsin � j) � 2B1]

4 (1 + 2� )

# �
�
�c2

1

�
�
�

�
j j B1

2 (1 + 2� )
+

j j2 B 2
1

(1 + � )2 (1 � � � < (k1)) +
j j [jB2j (1 + jsin � j) � 2B1]

4 (1 + 2� )

=
j j2 B 2

1

(1 + � )2 (1 � � � < (k1)) +
j j jB2j (1 + jsin � j)

4 (1 + 2� )
:



1702 S. Kaz�mo§lu, E. Deniz

Let � > 1 � < (k1). Then from (2.20) and jc1j � 1, we yield
�
�
�a3 � �a 2

2

�
�
� �

j j B1

2 (1 + 2� )
+

"
j j2 B 2

1

(1 + � )2 j1 � � � < (k1)j +
j j [jB2j (1 + jsin � j) � 2B1]

4 (1 + 2� )

# �
�
�c2

1

�
�
�

�
j j B1

2 (1 + 2� )
+

j j2 B 2
1

(1 + � )2 (� + < (k1) � 1) +
j j [jB2j (1 + jsin � j) � 2B1]

4 (1 + 2� )

=
j j jB2j (1 + jsin � j)

4 (1 + 2� )
�

j j2 B 2
1

(1 + � )2 (1 � � � < (k1)) :

Finally, we want to consider the case with (1+ jsin � j) jB 2 j
2B 1

< 1: By using (2.20) and jc1j � 1,
we obtain the following results according to the cases of�; k 1 and N.
For � � 1 � < (k1) + N; we have
�
�
�a3 � �a 2

2

�
�
� �

j j B1

2 (1 + 2� )
+

"
j j2 B 2

1

(1 + � )2 j1 � � � < (k1)j +
j j [jB2j (1 + jsin � j) � 2B1]

4 (1 + 2� )

# �
�
�c2

1

�
�
�

�
j j B1

2 (1 + 2� )
+

j j2 B 2
1

(1 + � )2 (1 � � � < (k1)) +
j j [jB2j (1 + jsin � j) � 2B1]

4 (1 + 2� )

=
j j2 B 2

1

(1 + � )2 (1 � � � < (k1)) +
j j jB2j (1 + jsin � j)

4 (1 + 2� )
;

and for 1 � < (k1) + N<� � 1 � < (k1) ; we obtain
�
�
�a3 � �a 2

2

�
�
� �

j j B1

2 (1 + 2� )
+

"
j j2 B 2

1

(1 + � )2 j1 � � � < (k1)j +
j j [jB2j (1 + jsin � j) � 2B1]

4 (1 + 2� )

# �
�
�c2

1

�
�
�

�
j j B1

2 (1 + 2� )
:

Similarly, for 1 � < (k1) < � < 1 � < (k1) � N; we yield
�
�
�a3 � �a 2

2

�
�
� �

j j B1

2 (1 + 2� )
+

"
j j2 B 2

1

(1 + � )2 j1 � � � < (k1)j +
j j [jB2j (1 + jsin � j) � 2B1]

4 (1 + 2� )

# �
�
�c2

1

�
�
�

�
j j B1

2 (1 + 2� )
;

and �nally, for � � 1 � < (k1) � N; we have
�
�
�a3 � �a 2

2

�
�
� �

j j B1

2 (1 + 2� )
+

"
j j2 B 2

1

(1 + � )2 j1 � � � < (k1)j +
j j [jB2j (1 + jsin � j) � 2B1]

4 (1 + 2� )

# �
�
�c2

1

�
�
�

�
j j B1

2 (1 + 2� )
+

j j2 B 2
1

(1 + � )2 (� + < (k1) � 1) +
j j [jB2j (1 + jsin � j) � 2B1]

4 (1 + 2� )

=
j j jB2j (1 + jsin � j)

4 (1 + 2� )
�

j j2 B 2
1

(1 + � )2 (1 � � � < (k1)) :

Thus the proof is completed. �

Taking  = 1 , � = 0 and ' (z) = (1 + Az)=(1 + Bz) ( � 1 � B < A � 1) in Theorems
2.3, 2.4 and 2.5, we have the following corollary.

Corollary 2.6. If f 2 A is given by (1.1) belongs to the classS� [A; B ] ; then
(1) For � 2 C;

�
�
�a3 � �a 2

2

�
�
� �

(
A � B

2 if jB j + j4 (1 � � ) (A � B ) � B j < 2
(A � B )

4 [jB j + j4 (1 � � ) (A � B ) � B j] if jB j + j4 (1 � � ) (A � B ) � B j � 2
:
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(2) For � 2 R;

�
�
�a3 � �a 2

2

�
�
� �

8
>>><

>>>:

jB j(A � B )
2 � (� � 1) (A � B )2 if � � 1 � 1�j B j

2(A � B )
A � B

2 if 1 � 1�j B j
2(A � B ) < � < 1 + 1�j B j

2(A � B )
jB j(A � B )

2 + ( � � 1) (A � B )2 if � � 1 + 1�j B j
2(A � B )

and

�
�
�a3 � �a 2

2

�
�
� �

8
>>><

>>>:

(A � B )
h
(A � B ) (1 � � ) + jB j+ B

4

i
if � � 1 + jB j+ B � 2

4(A � B )

A � B
2 if 1 + jB j+ B � 2

4(A � B ) <� < 1 � jB j� B � 2
4(A � B )

(A � B )
h
(A � B ) ( � � 1) + jB j� B

4

i
if � � 1 � jB j� B � 2

4(A � B )

:

Taking  = 1 , � = 1 and ' (z) = (1 + Az)=(1 + Bz) ( � 1 � B < A � 1) in Theorems
2.3, 2.4 and 2.5, we have the following corollary.

Corollary 2.7. If f 2 A is given by (1.1) belongs to the classC� [A; B ] ; then

(1) For � 2 C;

�
�
�a3 � �a 2

2

�
�
� �

( A� B
6 if jB j + j3 (1 � � ) (A � B ) � B j < 2

(A � B )
12 [jB j + j3 (1 � � ) (A � B ) � B j] if jB j + j3 (1 � � ) (A � B ) � B j � 2

:

(2) For � 2 R;

�
�
�a3 � �a 2

2

�
�
� �

8
>>><

>>>:

jB j(A � B )
6 � (� � 1) (A � B )2

4 if � � 1 � 2(1�j B j)
3(A � B )

A � B
6 if 1 � 2(1�j B j)

3(A � B ) < � < 1 + 2(1�j B j)
3(A � B )

jB j(A � B )
6 + ( � � 1) (A � B )2

4 if � � 1 + 2(1�j B j)
3(A � B )

and

�
�
�a3 � �a 2

2

�
�
� �

8
>>><

>>>:

A� B
12 [3 (A � B ) (1 � � ) + jB j + B ] if � � 1 + 2jB j+2 B � 1

6(A � B )
A � B

6 if 1 + 2jB j+2 B � 1
6(A � B ) <� < 1 � 2jB j� 2B � 1

6(A � B )
A � B

12 [3 (A � B ) ( � � 1) + jB j � B ] if � � 1 � 2jB j� 2B � 1
6(A � B )

:

Taking  2 Cn f 0g, � = 0 and ' (z) = (1 + z)=(1 � z) in Theorems 2.3, 2.4 and 2.5, then
we have the following corollary.

Corollary 2.8. If f 2 A is given by (1.1) belongs to the classS�
� [ ]; then

(i) For  2 Cn f 0g and � 2 C;
�
�
�a3 � �a 2

2

�
�
� �

(
j j if j1 + (1 � � ) 8 j < 1
j  j
2 [j1 + (1 � � ) 8 j + 1] if j1 + (1 � � ) 8 j � 1

:

(ii) For  > 0 and � 2 R;
�
�
�a3 � �a 2

2

�
�
� �

�
 � 4 (� � 1)  2 if � � 1
 + 4 ( � � 1)  2 if � > 1

:

(iii) For  2 Cn f 0g and � 2 R;

�
�
�a3 � �a 2

2

�
�
� �

8
>><

>>:

4j j2 (1 � � ) + j  j(1+ jsin � j� cos� )
2 if � � 1 + � 1 (; � )

j j if 1 + � 1 (; � ) <� < 1 � � 2 (; � )
j  j(1+ jsin � j� cos� )

2 � 4 j j2 (1 � � ) if � � 1 � � 2 (; � )

:

where � 1 (; � ) = (jsin � j� cos� � 1)
8j j and � 2 (; � ) = (jsin � j+cos � � 1)

8j j .
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Taking  2 Cn f 0g, � = 1 and ' (z) = (1 + z)=(1 � z) in Theorems 2.3, 2.4 and 2.5, we
obtain the following corollary.

Corollary 2.9. If f 2 A is given by (1.1) belongs to the classC� [ ], then

(i) For  2 Cn f 0g and � 2 C;

�
�
�a3 � �a 2

2

�
�
� �

(
j  j
3 if j1 + (1 � � ) 6 j < 1

j  j
2 [j1 + (1 � � ) 6 j + 1] if j1 + (1 � � ) 6 j � 1

:

(ii) For  > 0 and � 2 R;
�
�
�a3 � �a 2

2

�
�
� �

� 
3 � (� � 1)  2 if � � 1

3 + ( � � 1)  2 if � > 1

:

(iii) For  2 Cn f 0g and � 2 R;

�
�
�a3 � �a 2

2

�
�
� �

8
><

>:

j j2 (1 � � ) + j  j(1+ jsin � j� cos� )
6 if � � 1 + ' 1 (; � )

j  j
3 if 1 + ' 1 (; � ) <� < 1 � ' 2 (; � )

j  j(1+ jsin � j� cos� )
6 � j  j2 (1 � � ) if � � 1 � ' 2 (; � )

where ' 1 (; � ) = (jsin � j� cos� � 1)
6j j and ' 2 (; � ) = (jsin � j+cos � � 1)

6j j .
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Abstract
Let � = f � i ji 2 I g be a partition of the set of all primes P and G a �nite group. A set H of
subgroups ofG is said to be acomplete Hall � -set of G if every non-identity member of H
is a Hall � i -subgroup ofG for somei 2 I and H contains exactly one Hall � i -subgroup of
G for every i such that � i \ � (G) 6= ; . Let � H (A) = f � i 2 � (G)n� (A) j � (A) \ � (H G) 6= ;
for a Hall � i -subgroup H 2 H g. A subgroup A of G is said to be � � -permutable or � � -
quasinormal in G with respect to H if AH x = H xA for all x 2 G and H 2 H such
that � (H ) � � H (A), and � � -permutable or � � -quasinormal in G if A is � � -permutable in
G with respect to some complete Hall � -set of G. We say that a subgroup A of G is
weakly � � -quasinormal in G if G has a � -subnormal subgroupT such that AT = G and
A \ T � A � � G, where A � � G is the subgroup generated by all those subgroups ofA which
are � � -quasinormal in G. We study the structure of G being based on the assumption that
some subgroups ofG are weakly � � -quasinormal in G.

Mathematics Subject Classi�cation (2010). 20D10, 20D15, 20D20, 20D35

Keywords. �nite groups, � -permutable subgroup, � � -quasinormal subgroup, weakly
� � -quasinormal subgroup, supersoluble group

1. Introduction

Throughout this paper, all groups are �nite and G always denotes a �nite group. More-
over, P is the set of all primes, � � P and � 0 = Pn� . If n is an integer, the symbol � (n)
denotes the set of all primes dividingn; as usual, � (G) = � (jGj), the set of all primes
dividing the order of G.

In what follows, � = f � i ji 2 I g is some partition of all primes P, that is, P =
S

i 2 I � i
and � i \ � j = ; for all i 6= j . Let � (G) = f � i j� i \ � (G) 6= ; }.

Following [18,20,34� 36], a set H of subgroups ofG is said to be acomplete Hall � -set
of G if every non-identity member of H is a Hall � i -subgroup ofG for some� i 2 � (G) and
H contains exactly one Hall � i -subgroup for every � i 2 � (G). G is said to be � -full if G
possesses a complete Hall� -set; � -primary if j� (G)j � 1; � -nilpotent if G has a complete
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zhang12@mail.ustc.edu.cn (L. Zhang)
Received: 03.06.2019; Accepted: 17.12.2019



Finite groups with given weakly� � -quasinormal subgroups 1707

Hall � -set H = f H1; � � � ; H t g such that G = H1 � � � � � H t ; � -solubleif every chief factor
of G is � -primary; � -full group of Sylow typeif every subgroup ofG is a D � i -group for all
� i 2 � (G). � is always supposed to be a non-empty subset of the set� and � 0 = � n� .
n is said to be a � -number if � (n) �

S
� i 2 � � i . A subgroup A of G is said to be � -

subgroupof G if jAj is a � -number; � -subnormal in G if there exists a subgroup chain
A = A0 � A1 � � � � � An = G such that either A i � 1 is normal in A i or A i =(A i � 1)A i is
� -primary for all i = 1 ; � � � ; n.

Let L be some non-empty set of subgroups ofG and K � G. A subgroup A of G is
called L -permutable if AH = HA for all H 2 L ; L K -permutable if AH x = H xA for all
H 2 L and all x 2 K . In particular, a subgroup A of G is � -permutable in G if G has a
complete Hall � -set H such that A is L G-permutable (see [34]).

It is well known that permutable subgroups and supplemented subgroups play an im-
portant role in the theory of �nite groups. Recall that a subgroup A of G is said to be
� -semipermutable in G if G possesses a complete Hall� -set H such that AH x = H xA
for all x 2 G and all H 2 H with � (A) \ � (H ) = ; (see [19]). Let � H (A) = f � i 2
� (G)n� (A) j � (A) \ � (H G) 6= ; for a Hall � i -subgroup H 2 H g. A subgroup A of G is
said to be � � -permutable or � � -quasinormal in G with respect to H if AH x = H xA for all
x 2 G and H 2 H such that � (H ) � � H (A) (see [6]), and � � -permutableor � � -quasinormal
in G if A is � � -permutable in G with respect to some complete Hall� -set H of G (see [6]).
A subgroup A of G is said to be c-normal in G if G has a normal subgroupT such that
G = AT and A \ T � AG, where AG is the maximal normal subgroup of G contained
in A (see [38]). A subgroup A of G is said to be weakly � -permutable in G if G has a
� -subnormal subgroupT such that G = AT and A \ T � A �G , whereA �G is the subgroup
of A generated by all those subgroups ofA which are � -permutable in G (see [42]). By
using the above subgroups and supplemented subgroups, the researchers have obtained a
series of interesting results(see, for example, [4,6,8,10,14,19,26,27,31,34,38,42]). Now,
we consider the following new generalized supplemented subgroup.

De�nition 1.1. We say that a subgroup A of G is said to be weakly� � -quasinormal in
G if G has a� -subnormal subgroupT such that AT = G and A \ T � A � � G, where A � � G
is the subgroup generated by all those subgroups ofA which are � � -quasinormal in G.

In the classical case when� = ff 2g; f 3g; � � � g, � -permutable subgroup,� -semipermutable
subgroup, � � -quasinormal subgroup, weakly� -permutable subgroup and weakly� � -quasi-
normal subgroup are also calledS-permutable subgroup [4, 10], S-semipermutable sub-
group [14], � -quasinormal subgroup [27], weakly s-permutable subgroup [31] and weakly
� -quasinormal subgroup [26], respectively. It is clear that every � -permutable subgroup,
every � -semipermutable subgroup, every� � -quasinormal subgroup and every weakly� -
permutable subgroup are weakly� � -quasinormal.

Remark 1.2. In the case when� = ff 2g; f 3g; � � � g, [26, Examples 1.2 and 1.3] show that
weakly � � -quasinormal subgroups ofG are not necessarily� � -quasinormal, c-normal and
weakly � -permutable in G.

In this paper, we study the properties of weakly � � -quasinormal subgroups and use
them to determine the structure of �nite groups. We obtain the following results.

Theorem 1.3. Let G be a � -full group of Sylow type andH a complete Hall � -set of G
such that every member ofH is supersoluble. If every maximal subgroup of any non-cyclic
H 2 H is weakly � � -quasinormal in G, then G is supersoluble.

Recall that a normal subgroup E of G is called hypercyclically embedded inG (see [30,
p.217]) if every chief factor of G below E is cyclic. Hypercyclically embedded subgroups
play an important role in the theory of soluble groups (see [4,14,30,41]) and the condition
under which a normal subgroup is hypercyclically embedded inG were found by many
authors (see books [4,14,30,41] and the recent papers [15,20,23,32,33,42]).
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Suppose that G has a complete Hall� -set H = f H1; � � � ; H t g. Following [20], for any
subgroup H (resp. normal subgroupN ) of G we write H \ H (resp. H N=N ) to denote
the set f H \ H1; � � � ; H \ H t g (resp. f H1N=N; � � � ; H t N=N g).

Theorem 1.4. Let G be a � -full group of Sylow type, H a complete Hall � -set of G
such that every member ofH is nilpotent, and E a normal subgroup of G. If every
maximal subgroup of any non-cyclicH 2 E \ H is weakly � � -quasinormal in G, then E is
hypercyclically embedded inG.

Theorem 1.5. Let G be a� -full group of Sylow type,H a complete Hall � -set of G such
that every member ofH is supersoluble andE a normal subgroup ofG. If every cyclic
subgroupH of any non-cyclic T 2 E \ H of prime order and order 4 (if the Sylow 2-
subgroup ofE is non-abelian andH � Z1 (G)) is weakly � � -quasinormal in G, then E is
hypercyclically embedded inG.

We shall give the proofs of Theorems1.3-1.5 in section 3. In section 4, we consider some
applications of our results.

All unexplained terminologies and notations are standard, as in [4,11,14].

2. Preliminaries

We useS � to denote the class of all� -soluble groups andF� (G) to denote the product
of all normal � -nilpotent subgroups of G.

Lemma 2.1 (see [34, Lemma 2.1]). The classS � is closed under taking direct products,
homomorphic images and subgroups. Moreover, any extension of a� -soluble group by a
� -soluble group is a� -soluble group.

Lemma 2.2 (see [17, Lemma 2.6(i)]). F� (G) is � -nilpotent.

Following [18, 34], we useO� (G) to denote the subgroup ofG generated by all its � 0-
subgroups. Instead ofOf � i g(G) we write O� i (G). We useO� (G) to denote the subgroup
of G generated by all its normal � -subgroups. Instead ofOf � i g(G) ( resp. Of � i g0(G)) we
write O� i (G) ( resp. O� 0

i
(G)) .

Lemma 2.3 (see [34, Lemma 2.6] and [18, Lemma 2.1]). Let A, K and N be subgroups
of G. Suppose thatA is � -subnormal in G and N is normal in G.

(1) If A is a � -group, then A � O� (G).
(2) AN=N is � -subnormal in G=N.
(3) A \ K is � -subnormal in K .
(4) If jG : Aj is a � -number, then O� (A) = O� (G).

Lemma 2.4 (see [34, Lemma 2.8]). Let H , K and N be subgroups of a� -full group
G. Let H = f H1; � � � ; H t g be a complete Hall� -set of G and L = H K . Suppose that
H is L -permutable andN is normal in G. Then HN=N is L � -permutable, whereL � =
f H1N=N; � � � ; H t N=N gKN=N . In particular, if H is � -permutable in G, then HN=N is
� -permutable in G=N.

Lemma 2.5 (see [34, Theorem C]). Let G be a � -full group of Sylow type. Then the
set of all � -permutable subgroups ofG forms a sublattice of the lattice of all� -subnormal
subgroups ofG.

Lemma 2.6 (see [34, Lemma 3.1]). Let H be a� 1-subgroup of a� -full group G. Then H
is � -permutable in G if and only if O� 1 (G) � NG(H ).

Lemma 2.7 (see [21, VI, 4.10]). Assume that A and B are two subgroups ofG and
G 6= AB . If AB g = B gA holds for any g 2 G, then either A or B is contained in a proper
normal subgroup ofG.
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Before continuing, we give some facts about� � -quasinormal and weakly� � -quasinormal
subgroups ofG.

Lemma 2.8 (see [6, Lemma 2.6]). Suppose thatG has a complete Hall � -set H =
f H1; � � � ; H t g such that the subgroupsH and K of G are � � -quasinormal in G with respect
to H . Let R be a normal subgroup ofG and H � L � G. Then:

(1) H 0 = f H1R=R; � � � ; H t R=Rg is a complete Hall � -set of G=R. Moreover, if
� (H ) = � (HR=R), then HR=R is � � -quasinormal in G=N with respect to H 0.

(2) If HK = KH and � (H \ K ) = � (H ) = � (K ), then H \ K is � � -quasinormal in
G with respect to H .

(3) If for some i we haveH � O� i (G), then H is � -quasinormal in G.
(4) If H reduces into L , then H is � � -quasinormal in L with respect to L \ H .
(5) If G is a � -full group of Sylow type, thenH is � � -quasinormal in L .

From Lemma 2.8 we directly have the following lemma.

Lemma 2.9. Let G is a � -full group of Sylow type andH � K be subgroups ofG. Suppose
that � i 2 � (G) for some i .

(1) If H is a � i -group, then H � � G is � � -quasinormal in G and HG � H � � G.
(2) H � � G � H � � K .
(3) If K is a � i -group and H is normal in G, then K � � G=H � (K=H ) � � (G=H ) .
(4) If H is normal in G and E is a � i -subgroup ofG such that (jH j; jE j) = 1 , then

E � � GH=H � (EH=H ) � � (G=H ) .

Lemma 2.10. Let G be a � -full group of Sylow type andH = f H1; � � � ; H t g a complete
Hall � -set of G. Suppose thatH � K � G and � i 2 � (G) for some i .

(1) If H is � � -quasinormal in G, then H is weakly � � -quasinormal in G.
(2) Suppose thatK is a � i -group andH is normal in G. If K is weakly� � -quasinormal

in G, then K=H is weakly � � -quasinormal in G=H.
(3) If H is weakly � � -quasinormal in G, then H is weakly � � -quasinormal in K .
(4) Suppose thatH is normal in G and E is a � i -subgroup ofG such that(jH j; jE j) = 1 .

If E is weakly� � -quasinormal in G, then EH=H is weakly� � -quasinormal in G=H.

Proof. (1) This is obvious.
(2) Assume that for some� -subnormal subgroupT of G, we have KT = G and T \

K � K � � G. Then by Lemma 2.3(2), TH=H is � -subnormal in G=H. Besides, we have
that (TH=H )(K=H ) = G=H and (TH=H ) \ (K=H ) = ( TH \ K )=H = ( T \ K )H=H �
K � � GH=H = K � � G=H � (K=H ) � � (G=H ) by Lemma 2.9(1)(3). This shows that K=H is
weakly � � -quasinormal in G=H.

(3) Let T be a � -subnormal subgroup ofG such that HT = G and T \ H � H � � G.
Then K = K \ HT = H (K \ T). By Lemma 2.3(3), we have that K \ T is � -subnormal
in K . Moreover, we have that (K \ T) \ H � H � � G � H � � K by Lemma 2.9(2). Therefore,
H is weakly � � -quasinormal in K .

(4) Assume that for some� -subnormal subgroupT of G we haveET = G and T \ E �
E � � G. Clearly, (TH=H )(EH=H ) = G=H. Since(jH j; jE j) = 1 , we have that

(jT \ EH : T \ E j; jT \ EH : T \ H j)

= ( j(T \ EH )E : E j; j(T \ EH )H : H j)j(jEH : E j; jEH : H j)

= 1 :

Hence by [11, Ch. A, 1.6(b)], T \ EH = ( T \ E)(T \ H ): It follows from Lemma 2.9(4) that
(TH=H ) \ (EH=H ) = ( TH \ EH )=H = ( T \ EH )H=H = ( T \ E)H=H � E � � GH=H �
(EH=H ) � � (G=H ) . Besides, sinceTH=H is � -subnormal in G=H by Lemma 2.3(2), we
obtain that EH=H is weakly � � -quasinormal in G=H. �
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Let P be a p-group. If P is not a non-abelian 2-group, then we use
( P) to denote

 1(P). Otherwise, 
( P) = 
 2(P).

The following lemma is a corollary of [16, Lemma 4.4] and [9, Lemma 2.12].

Lemma 2.11. Let P be a normal p-subgroup ofG and C a Thompson critical subgroup
of P (see[12, p.185]). If either P=�( P) is hypercyclically embedded inG=�( P) or 
( C)
is hypercyclically embedded inG, then P is hypercyclically embedded inG.

Lemma 2.12 (see [16, Lemma 4.3]). Let C be a Thompson critical subgroup of ap-group
P.

(1) If p is odd, then the exponent of
( C) is p.
(2) If P is a non-abelian 2-group, then the exponent of
( C) is 4.

Lemma 2.13 (see [33, Theorem C]). Let E be a normal subgroup ofG. If F � (E ) is
hypercyclically embedded inG, then E is hypercyclically embedded inG.

In this Lemma, F � (E ) is the generalized Fitting subgroup of E , that is, the largest
normal quasinilpotent subgroup of E (see [22, Chapter X]).

Recall that a class of groupsF is said to be aformation provided that (i ) if G 2 F and
N � G, then G=N 2 F, and (ii ) G=(M \ N ) 2 F for any normal subgroupsM , N of G
with G=M 2 F and G=N 2 F. A formation F is said to besaturated if G=�( G) 2 F implies
that G 2 F.

Lemma 2.14 (see [31, Lemma 2.16] or [14, Theorem 1.2.7(b)]). Let F be a saturated
formation containing all supersoluble groups andE a normal subgroup ofG such that
G=E 2 F. If E is cyclic, then G 2 F.

3. Proofs of Theorems 1.3-1.5

The following Proposition is the main stage in the proof of Theorem1.3 and Theorem
1.4.

Proposition 3.1. Let G be a � -full group of Sylow type andH = f H1; � � � ; H t g be a
complete Hall � -set of G such that H i is a supersoluble� i -group for all i 2 f 1; � � � ; tg, and
let the smallest primep of � (G) belongs to� j . If every maximal subgroup ofH j is weakly
� � -quasinormal in G, then G is soluble.

Proof. Assume that this is false and let(G; H j ) be a counterexample with minimal jGj +
jH j j. Without loss of generality, we may assume thatj = 1 . Then p = 2 2 � (H1) by the
Feit-Thompson theorem.

(1) G is not � -soluble, and soj� (G)j > 1.
Assume that G is � -soluble. Then every chief factorH=K of G is � -primary, that is,

H=K is a � i -group for somei . But since H i is supersoluble,H=K is an elementary abelian
group. It follows that G is soluble. This contradiction shows that (1) holds.

(2) O� 1 (G) = 1 .
Assume that O� 1 (G) 6= 1 . Let N = O� 1 (G). If N = H1, then G=N is soluble by the Feit-

Thompson theorem, and soG is � -soluble, contrary to Claim (1). HenceN 6= H1, soH1=N
is a non-identity Hall � 1-subgroup of G=N. Let M=N be a maximal subgroup ofH1=N.
Then M is a maximal subgroup ofH1. By the hypothesis and Lemma2.10(2), M=N is
weakly � � -quasinormal in G=N. This shows that the hypothesis holds for(G=N; H1=N).
HenceG=N is soluble by the choice of(G; H1). Consequently, G is � -soluble by Lemma
2.1, which contradicts Claim (1). Hence we have(2).

(3) O� 0
1
(G) = 1 .

Assume that K = O� 0
1
(G) 6= 1 . Then H1K=K is a Hall � 1-subgroup ofG=K . Let W=K

be a maximal subgroup ofH1K=K . Then W = ( H1 \ W )K is a maximal subgroup of
H1K . If H1 \ W is not a maximal subgroup ofH1, then there exists a subgroupE of H1
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such that H1 \ W < E < H 1. Since(jH1j; jK j) = 1 , W < EK < H 1K . This contradiction
shows that H1 \ W is a maximal subgroup ofH1. By the hypothesis and Lemma2.10(4),
W=K is weakly � � -quasinormal in G=K . This shows that (G=K; H 1K=K ) satis�es the
hypothesis, soG=K is soluble by the choice of(G; H1). But since K is soluble by the
Feit-Thompson theorem, it follows that G is soluble. This contradiction shows that (3)
holds.

(4) Let R be a minimal normal subgroup ofG. Then R is not � -soluble, G = RH 1 and
G=R is soluble.

Assume that R is � -soluble. Then R is a � i -subgroup of G for some i . It follows
that R � O� 1 (G) or R � O� 0

1
(G), which contradicts Claim (2) or (3). Hence R is not

� -soluble. By the hypothesis and Lemma2.10(3), it is easy to see that (RH 1; H1) satis�es
the hypothesis. If RH 1 < G , then RH 1 is soluble by the choice ofG. It follows that
R is soluble, and soR is � -soluble, a contradiction. Hence,G = RH 1. Consequently,
G=R = H1R=R �= H1=(H1 \ R) is soluble sinceH1 is supersoluble.

(5) R is the unique minimal normal subgroup ofG and F� (G) = 1 .
This directly follows from Claim (4) and Lemma 2.2.
(6) R \ H1 � �( H1).
Assume that R \ H1 � �( H1). Then by [21, IV, Theorem 4.6], there exists a normal

subgroup M of R such that R=M is a � 1-group and jR \ H1j j j R=M j. It follows that
O� 1 (R) � M . Since O� 1 (R) char R � G, we haveO� 1 (R) � G, so O� 1 (R) = 1 or R by
Claim (5). If O� 1 (R) = 1 , then R � H1, which contradicts Claim (4). HenceO� 1 (R) = R,
and thereforeM = R. Moreover, sincejR \ H1j j j R=M j, we obtain that R \ H1 = 1 . But,
clearly, R \ H1 is a Hall � 1-subgroup ofR. Thus R is a � 0

1-subgroup, soR � O� 0
1
(G) = 1 ,

a contradiction. Hence (6) holds.
(7) Final contradiction.
By Claim (6), H1 has a maximal subgroupL such that H1 = ( R \ H1)L . By the

hypothesis, there exists a� -subnormal subgroup T of G such that G = LT and L \
T � L � � G. Since jG : T j = jLT : T j = jL : L \ T j is a � 1-number, we obtain that
O� 1 (T) = O� 1 (G) by Lemma 2.3(4). As t > 1, O� 1 (G) > 1. It follows from Claim (5) that
R � O� 1 (G) = O� 1 (T) � TG � T . HenceL \ R � L \ T � L � � G, and soL \ R = L � � G \ R.
Let Rj be any Hall � j -subgroup of R with j 6= 1 . Then Rj is also a Hall � j -subgroup of
G by Claim (4). It follows from Claim (3) that L � � GRj = Rj L � � G. Hence

Rj (L \ R) = Rj (L � � G \ R) = Rj L � � G \ R = L � � GRj \ R = ( L � � G \ R)Rj = ( L \ R)Rj ;

which implies that L \ R is � � -quasinormal in R. Clearly, we can see that(L \ R)Rj is a
proper subgroup ofR. Applying Lemma 2.7, we can assume thatM is a proper normal
subgroup of R such that either L \ R � M or Rj � M . If Rj � M , then Rj = 1 sinceR
is the minimal normal subgroup of G by Claim (5)(see [21, I, Theorem 9.12(b)]). Hence
R is a � 1-group, a contradiction. If L \ R � M , then L \ R � L \ M . It follows that

jR=M j � 1 = jRj � 1 =jM j � 1 = jH1 \ R : H1 \ M j
�
�
� jH1 \ R : L \ M j

�
�
� jH1 \ R : L \ Rj;

But as H1 is supersoluble andL is a maximal subgroup ofH1, we have that jH1 \ R :
L \ Rj = jH1 : L j = q, whereq 2 � 1 is a prime. This shows that jR=M j � 1 jq. Note that 2jjRj
by Claim (4), we have that 2jjR=M j by [21, I, Theorem 9.12(b)]. This implies that q = 2 .
HenceR=M is 2-nilpotent by [ 21, IV, Theorem 2.8], and so it is soluble. Again by [21, I,
Theorem 9.12(b)], we obtain that R is soluble, a contradiction. This �nal contradiction
completes the proof. �

Proof of Theorem 1.3 . Let H = f H1; � � � ; H t g be a complete Hall � -set of G. We can
assume without loss of generality thatH i is a supersoluble� i -group for all i 2 f 1; � � � ; tg.
Assume that this is false and letG be a counterexample of minimal order. Then:

(1) G is soluble.
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By the Feit-Thompson theorem, we may assume that2jjGj. Without loss of generality,
we may assume that2 2 � (H1). If H1 is cyclic, then G has a cyclic Sylow2-subgroup.
HenceG is 2-nilpotent by [ 21, IV, Theorem 2.8] and soG is soluble. If H1 is non-cyclic,
then G is soluble by Proposition 3.1.

(2) Let R be a minimal normal subgroup ofG. Then G=R is supersoluble.
It is clear that H = f H1R=R; H2R=R; � � � ; H t R=Rg is a complete Hall� -set ofG=R and

H i R=R �= H i =Hi \ R is supersoluble. By Claim(1), R is an elementary abelianp-group
for some primep. Without loss of generality, we may assume thatR � H1. Assume that
H1=R is non-cyclic. Then H1 is non-cyclic. Let M=R be a maximal subgroup ofH1=R.
Then M is a maximal subgroup ofH1. By the hypothesis and Lemma2.10(2), M=R is
weakly � � -quasinormal in G=R. Now let M i =R be a maximal subgroup ofH i R=R, where
i 6= 1 , and suppose that H i R=R is non-cyclic. Then M i = ( H i \ M i )R is a maximal
subgroup of H i R. With the same discussion as Claim(3) in the proof of Proposition 3.1,
we have that H i \ M i is a maximal subgroup ofH i . Then by the hypothesis and Lemma
2.10(4), M i =R is weakly � � -quasinormal in G=R. This shows that the hypothesis holds for
G=R. The choice ofG implies that G=R is supersoluble.

(3) R is the unique minimal normal subgroup of G, �( G) = 1 , CG(R) = R = F (G) =
Op(G), R is an elementary abelianp-group for some primep and jRj > p .

This directly follows from Claims (1), (2) and [11, Chapter A, Theorem 15.2].
Without loss of generality, we may assume thatp 2 � (H1). Then R � H1.
(4) Final contradiction.
Since �( G) = 1 , R � �( H1) by [21, III, Lemma 3.3]. Hence there exists a maximal

subgroup K of H1 such that H1 = RK . Let E = R \ K . By Claim (3), we have that
E � H1. Since H1 is supersoluble,jR : E j = jRK : K j = jH1 : K j is a prime. HenceE
is a maximal subgroup ofR, and soE 6= 1 by Claim (3). SinceR is not cyclic by Claim
(3) and R � H1, H1 is non-cyclic. Then by the hypothesis, there exists a� -subnormal
subgroup T of G such that G = KT and K \ T � K � �G . SincejG : T j is a � 1-number, we
have that O� 1 (T) = O� 1 (G) by Lemma 2.3(4). If O� 1 (G) = 1 , then G = H1. HenceE � G,
which contradicts the minimality of R. HenceO� 1 (G) 6= 1 , and so R � O� 1 (T) � T by
Claim (3). It follows that K \ R � K \ T � K � �G , and so K \ R = K � �G \ R. Let H j
be any Hall � j -subgroup of G with j 6= 1 . In view of Claim (3) and Lemma 2.9(1), we
have that K � �G H j = H j K � �G . HenceE = K \ R = K � �G \ R = K � �G H j \ R � K � �G H j .
Moreover, sinceE � H1 by above, we obtain that E � G. By the minimality of R, we
have that E = 1 , which contradicts with Claim (3). This �nal contradiction completes
the proof. �

Proof of Theorem 1.4 . Let H = f H1; � � � ; H t g be a complete Hall � -set of G. We can
assume without loss of generality that H i is a nilpotent � i -group for all i 2 f 1; � � � ; tg.
Assume that this is false and(G; E ) be a counterexample with minimal jGj + jE j. Then:

(1) E is supersoluble.
It is clear that E \ H is a complete Hall � -set of E , H i \ E is nilpotent and E is a � -full

group of Sylow type. By Lemma 2.10(3) and Theorem 1.3, we get that E is supersoluble.
(2) Let R be a minimal normal subgroup ofG contained in E . Then R is an elementary

abelian p-group for some prime p, E=R is hypercyclically embedded in G=R and R is
non-cyclic.

By Claim (1), R is an elementary abelianp-group for some primep. Without loss of
generality, we may assume thatR � H1. Clearly, H R=R is a complete Hall � -set of G=R
and H i R=R �= H i =(H i \ R) is nilpotent. Assume that (H1=R) \ (E=R) is non-cyclic.
Then H1 \ E is non-cyclic. Let M=R be a maximal subgroup of(H1=R) \ (E=R) . Then
M is a maximal subgroup of H1 \ E . Hence M=R is weakly � � -quasinormal in G=R
by the hypothesis and Lemma2.10(2). Now assume that M i =R is a maximal subgroup
of some non-cyclic(H i R=R) \ (E=R), where i 6= 1 . Then H i R \ E is non-cyclic and
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M i = ( H i \ M i )R is a maximal subgroup ofH i R \ E. With the same discussion as Claim
(3) in the proof of the Proposition 3.1, we have that H i \ M i is a maximal subgroup of
H i \ E . Then by the hypothesis and Lemma2.10(4), M i =R is weakly � � -quasinormal in
G=R. This shows that (G=R; E=R) satis�es the hypothesis. HenceE=R is hypercyclically
embedded inG=R by the choice of(G; E ). It is also clear that R is non-cyclic. Hence(2)
holds.

(3) R is the unique minimal normal subgroup ofG contained in E .
Let L be a minimal normal subgroup of G contained in E such that L 6= R. Then

E=L is also hypercyclically embedded inG=L by Claim (2). It follows that RL=L is
hypercyclically embedded inG=L. Then jRj = p for RL=L �= R, contrary to Claim (2).
Hence we have(3).

Without loss of generality, we may assume thatp 2 � (H1).
(4) E is a p-group, and soE � H1.
Let Q be a Sylowq-subgroup ofE , where q is the largest prime belongs of� (E ). Since

E is supersoluble by Claim(1), we obtain that Q charE � G and soQ � G. HenceR � Q,
p = q and F (E) = Q is a Sylowp-subgroup ofE by Claim (3). It follows from [ 13, Theorem
1.8.18] that CE (Q) � Q. Moreover, sinceQ � H1 \ E and H1 is nilpotent, we obtain that
Q = H1 \ E . HenceH1 \ Q = Q = H1 \ E and H i \ Q = 1 for all i 2 f 2; � � � ; tg. This
implies the hypothesis holds for(G; Q). Assume that Q < E . Then Q is hypercyclically
embedded inG by the choice of (G; E ). It follows that R is hypercyclically embedded in
G, and soR is cyclic by Claim (3), contrary to Claim (2). HenceE = Q is a p-group, and
so E � H1.

(5) �( E ) = 1 , so E is an elementary abelianp-group.
Assume that �( E ) 6= 1 . Then R � �( E ) by Claim (3). HenceE=�( E ) is hypercyclically

embedded inG=�( E ) by Claim (2) and [14, Chapter 1, Theorem 2.6(d)]. It follows from
Claim (4) and Lemma 2.11 that E is hypercyclically embedded inG. This contradiction
shows that (5) holds.

(6) Final contradiction.
Let R1 be a maximal subgroup ofR such that R1 � H1. Then jR1j > 1 by Claim (3). By

Claim (5), there exists a complementS of R in E (maybe S = 1 ). Let V = R1S. Then,
clearly, R1 = R \ V and V is a maximal subgroup ofE . By the hypothesis and Claims
(2) � (5), there exists a� -subnormal subgroupT of G such that G = V T and V \ T � V� �G .
In view of Claim (4) and Lemma 2.8(3), we have that V� �G is � -quasinormal subgroup of
G. With the same discussion as Claim(6) in the proof of [42, Theorem 1.13], we have
that R1 = 1 . This contradiction completes the proof. �

In order to prove Theorem 1.5, we �rst prove the following:

Lemma 3.2. Let G be a � -full group of Sylow type,H a complete Hall � -set of G such
that every member ofH is supersoluble andP a normal p-subgroup ofG. If every cyclic
subgroupH of P of prime order and order 4 (if P is a non-abelian 2-group and H �
Z1 (G)) is weakly � � -quasinormal in G, then P is hypercyclically embedded inG.

Proof. Let H = f H1; � � � ; H t g be a complete Hall � -set of G. We can assume without
loss of generality that H i is a supersoluble� i -group for all i 2 f 1; � � � ; tg. Assume that
this is false and let (G; P) be a counterexample with minimal jGj + jP j. Without loss of
generality, we may assume thatP � H1.

(1) Let P=N be a chief factor ofG. Then N is hypercyclically embedded inG. HenceN
is the unique normal subgroup ofG such that P=N is a chief factor of G and jP=Nj > p .

It is clear that (G; N ) satis�es the hypothesis. HenceN is hypercyclically embedded in
G by the choice of(G; P). Assume that G has another normal subgroupR 6= N of G such
that P=R is a chief factor ofG. Then R is also hypercyclically embedded inG. It follows
that P=N = RN=N is hypercyclically embedded in G=N. Hence P is hypercyclically
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embedded in G. This contradiction shows that N is the unique normal subgroup such
that P=N is a chief factor of G. It is also clear that jP=Nj > p .

(2) The exponent of P is p or 4 (if P is a non-abelian2-group).
Let C be a Thompson critical subgroup of P (see [12, p.185]). If 
( C) < P , then


( C) � N is hypercyclically embedded inG by Claim (1). Hence by Lemma2.11, P is
hypercyclically embedded inG, a contradiction. Hence
( C) = P, so by Lemma2.12, the
exponent of P is p or 4 (if P is a non-abelian2-group).

(3) Final contradiction .
Since H1=N is supersoluble andjP=Nj > p , H1=N has a minimal normal subgroup

L=N such that 1 6= L=N < P=N and L=N is cyclic. Let x 2 LnN and H = hxi . Then
L = HN and jH j = p or 4 (if P is a non-abelian2-group) by Claim (2). If H � Z1 (G),
then L=N = HN=N � Z1 (G)N=N � Z1 (G=N) by [14, Chapter 1, Theorem 2.6(d)]. So
Z1 (G=N) \ P=N 6= 1 . HenceP=N � Z1 (G=N) sinceP=N is a chief factor ofG. It follows
from Claim (1) that P is hypercyclically embedded inG. This contradiction shows that
H � Z1 (G). Then by the hypothesis, there exists a� -subnormal subgroupT of G such
that G = HT and H \ T � H � �G . With a similar argument as Claim (6) in the proof
of Theorem 1.4, we have that H � �G is � -quasinormal in G. In view of Claim (3) in the
proof of [8, Lemma 3.2], we obtain that L=N � G=N. This contradiction completes the
proof. �

Proof of Theorem 1.5 . Let H = f H1; � � � ; H t g be a complete Hall � -set of G. We can
assume without loss of generality thatH i is a supersoluble� i -group for all i 2 f 1; � � � ; tg.
Assume that this is false and let(G; E ) be a counterexample with minimal jGj + jE j. Let
P be a Sylowp-subgroup ofE , wherep is the smallest prime containing in � (E ). Without
loss of generality, we may assume thatP � H1 \ E .

(1) H1 \ E is non-cyclic.
Assume that H1 \ E is cyclic. Then P is cyclic. By [21, Chapter IV, Theorem 2.8], E is

p-nilpotent. Let Ep0 be a normal Hall p0-subgroup ofE . Then Ep0 � G. If Ep0 = 1 , then E
is cyclic, soE is hypercyclically embedded inG, a contradiction. HenceEp0 6= 1 . Clearly,
H i \ Ep0 = H i \ E for i = 2 ; � � � ; t . This shows the hypothesis holds for(G; Ep0), so Ep0

is hypercyclically embedded inG by the choice of (G; E ). But as E=Ep0 �= P is cyclic, it
follows that E is hypercyclically embedded inG. This contradiction shows that (1) holds.

(2) If E = P, then E is hypercyclically embedded inG.
This directly follows from Lemma 3.2 and Claim (1).
(3) E is not p-nilpotent.
Assume that E is p-nilpotent. Let Ep0 be a normal Hall p0-subgroup of E . Then

Ep0 � G. By Claim (2), Ep0 6= 1 . Clearly, H Ep0=Ep0 is a complete Hall � -set of G=Ep0 and
H i Ep0=Ep0 �= H i =Hi \ Ep0 is supersoluble.

We claim that the hypothesis holds for (G=Ep0; E=Ep0). In fact, H i Ep0=Ep0 \ E=Ep0 = 1
for i = 2 ; � � � ; t and H1Ep0=Ep0\ E=Ep0 = E=Ep0. It is trivial when E=Ep0 is cyclic. We may
therefore, assume thatE=Ep0 is non-cyclic. Let H=Ep0 be a cyclic subgroup ofE=Ep0 of
order p or 4 (if the Sylow 2-subgroup of E=Ep0 is non-abelian andH=Ep0 � Z1 (G=Ep0)) .
Then by Schur-Zassenhaus theorem,H = Ep0 o L and without loss of generality, we
may assume that L � E \ H1. Note that if L � Z1 (G), then H=Ep0 = LE p0=Ep0 �
Z1 (G)Ep0=Ep0 � Z1 (G=Ep0) by [14, Chapter 1, Theorem 2.6(d)]. HenceL is of order p or
4 (if the Sylow 2-subgroup ofE is non-abelian andL � Z1 (G)) . Then by Lemma 2.10(4),
we see that the hypothesis holds for(G=Ep0; E=Ep0). Hence E=Ep0 is hypercyclically
embedded in G=Ep0 by the choice of (G; E ). On the other hand, it is clear that the
hypothesis holds for (G; Ep0), so Ep0 is hypercyclically embedded inG by the choice of
(G; E ). Therefore E is hypercyclically embedded inG, a contradiction. Hence we have
(3).

(4) Final contradiction.
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By Claim (3), [21, Chapter IV, Theorem 5.4] and [13, Theorem 3.4.11],E has ap-closed
Schmidt subgroup S = P1 o Q, whereP1 is a Sylowp-subgroup ofS of exponentp or 4 (if
P1 is non-abelian2-group), Q is a Sylowq-subgroup ofS for some primeq 6= p, P1=�( P1)
is an S-chief factor, Z1 (S) = �( S) and �( S) \ P1 = �( P1).

We claim that jP1 : �( P1)j = p. If q 2 � (H1), then S is a � 1-group, and soS � H g
1 for

someg 2 G sinceG is a � -full group of Sylow type. SinceH1 is supersoluble andP1=�( P1)
is an S-chief factor, jP1 : �( P1)j = p. Now we consider thatq =2 � (H1). Assume that there
exists a minimal subgroupD=�( P1) of P1=�( P1) such that D=�( P1) is not � -quasinormal
in S=�( P1). Let x 2 Dn�( P1) and U = hxi . Then D = U�( P1) and jUj = p or 4 (if P1
is non-abelian 2-group). If U � Z1 (G), then U � Z1 (S) \ P1 = �( S) \ P1 = �( P1),
a contradiction. Hence U � Z1 (G). Then by the hypothesis and Lemma2.10(3), U
is weakly � � -quasinormal in S. Hence there exists a� -subnormal subgroupT of S such
that S = UT and U \ T � U� �S . Let U� �S = hU1; � � � ; Ut i , where U1; � � � ; Ut are all non-
identity � � -quasinormal subgroups ofS contained in U. Lemma 2.8(3) implies that Ui is
� -quasinormal in S sinceUi � P1 � S. Then by Lemma 2.5, U� �S is � -quasinormal in S.
Arguing as for Claim (2) in the proof [8, Proposition 3.1], we have that jP1 : �( P1)j = p.
Hence P1 is cyclic of exponent p. This implies that P1 is a group of order p. Since
NS(P1)=CS(P1) . Aut (P1) is a group of orderp� 1 and p is the smallest prime containing
in � (E ), it follows that NS(P1) = CS(P1) = S. Thus Q � S. This contradiction completes
the proof. �

4. Some applications of our results

By Theorems 1.4 and 1.5, we may obtain the following results.

Corollary 4.1. Let F be a saturated formation containing all supersoluble groups andE
a normal subgroup ofG such that G=E 2 F. Suppose thatG is a � -full group of Sylow
type and H a complete Hall � -set of G such that every member ofH is nilpotent. If
every maximal subgroup of any non-cyclicH 2 E \ H is weakly� � -quasinormal in G, then
G 2 F.

Corollary 4.2. Let F be a saturated formation containing all supersoluble groups andE
a normal subgroup ofG such that G=E 2 F. Suppose thatG is a � -full group of Sylow
type and H a complete Hall � -set of G such that every member ofH is supersoluble. If
every cyclic subgroupH of any non-cyclic T 2 E \ H of prime order and order 4 (if the
Sylow 2-subgroup ofE is non-abelian and H � Z1 (G)) is weakly � � -quasinormal in G,
then G 2 F.

Corollary 4.3. Let F be a saturated formation containing all supersoluble groups andE
a normal subgroup ofG such that G=E 2 F. Suppose thatG is a � -full group of Sylow
type and H a complete Hall� -set of G such that every member ofH is nilpotent. If every
maximal subgroup of any non-cyclicH 2 F � (E ) \ H is weakly � � -quasinormal in G, then
G 2 F.

Proof. By the hypothesis and Theorem 1.4, we obtain that F � (E ) is hypercyclically
embedded inG. Then E is hypercyclically embedded inG by Lemma 2.13. Hence by
Lemma 2.14, G 2 F. �

A similar argument as in the proof of Corollary 4.3, we can get the following corollary
from Theorem 1.5.

Corollary 4.4. Let F be a saturated formation containing all supersoluble groups andE
a normal subgroup ofG such that G=E 2 F. Suppose thatG is a � -full group of Sylow
type and H a complete Hall � -set of G such that every member ofH is supersoluble. If
every cyclic subgroupH of any non-cyclic T 2 F � (E ) \ H of prime order and order 4 (if
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the Sylow2-subgroup ofE is non-abelian and H � Z1 (G)) is weakly � � -quasinormal in
G, then G 2 F.

Theorems 1.3-1.5 and Corollaries 4.1-4.4 cover lots of known results, in particular, [7,
Theorem 3], [37, Theorems 1 and 2], [42, Theorems 1.5 and 1.13, Corollaries 1.6 and
1.14, and Proposition 4.1], [8, Theorems 1.2 and 1.10], [21, Chap. VI, Theorem 10.3],
[28, Corollary 3.4], [31, Theorem 1.4], [38, Theorem 4.1], [3, Theroems 3.2 and 4.1, and
Corollary 4.4], [2, Theroems 1.3 and 1.4], [39, Theorem 1 and Corollary 1], [29, Theorem
3.5], [24, Theorem 2], [40, Theorem 3.1], [25, Theorem 3.4], [1, Theorem 3.1], [5, Theorems
2 and 5].
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Abstract
In this article, we consider an initial value problem for a nonlinear di�erential equation
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local existence and uniqueness of the solution when the nonlinear function on the right
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1. Introduction and motivation

The birth of fractional calculus dates back to the early days of di�erential calculus. The
number of researchers working on fractional calculus were inadequate when compared to
researchers in di�erential calculus studies, eventually there has been no progress on this
�eld in a reasonable amount of time. However, the interest in fractional calculus and
fractional di�erential equations has increased considerably for the last three decades. This
has led to a rapidly development in fractional calculus by virtue of the techniques, methods
and results used in the ordinary di�erential calculus. Evidently, a substantial part of the
interest in this subject derives from initial-value problems (IVPs) and boundary-value
problems (BVPs) for the fractional di�erential equations with fractional derivatives such
as Riemann-Liouville (RL), Caputo, Caputo-Fabrizio, Grünwald-Letkinov etc. Existence
and uniqueness of solution for the IVPs and BVPs were studied by many researchers (see
for example [2, 5, 7, 11, 13� 16, 21� 26]). These articles deal with the qualitative properties
of solutions for the equations with continuous right-hand side. However, in this paper, we
address an equation with Riemann-Liouville derivative

D au(x) = f
�
x; u(x)

�
;

such that f (x; t ) has a discontinuity at x = 0 where (x; t ) 2 [0; T] � R.
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Throughout the text, by an equation with continuous right-hand side, we mean a func-
tion f (x; t ) which is continuous on[0; T] � R; and a discontinuous right-hand side will refer
a function f (x; t ) which has a discontinuity at x = 0 .

Considering the coincidence of �rst order RL derivative with ordinary derivative (see
[20, 21]), real-world applications of an equation with RL derivative which has discontin-
uous right-hand side would be enlightening from many problems arising from mechanics,
electrical engineering and the theory of automatic control. Di�erential equations with
discontinuous right-hand sides, in particular with a function f (x; t ) which is discontinuous
in x and continuous in t were studied widely in the literature. For these studies, we refer
the book of Filippov [12] (also the references cited therein), which is accepted as a basic
source for the general theory of discontinuous dynamical systems.

In this paper, we investigate the following initial value problem for a di�erential equation
with RL fractional derivative:

(
D au(x) = f

�
x; u(x)

�
; x > 0

u(0) = u0;
(1.1)

where 0 < a < 1, u0 6= 0 is a real number and the function f will be speci�ed later. The
operator, D a represents RL fractional derivative of ordera; which is de�ned by combining
the ordinary derivative and RL fractional integral I a as follows:

D au (x) :=
d

dx

h
x I 1� au

i
with I au (x) :=

1
� ( a)

Z x

0

u (� )

(x � � )1� a d�;

where, �( �) is the well-known Gamma function.
Problem (1.1) with continuous right-hand side was �rst discussed in [16] and it was

claimed that the continuous solution of the problem exists on the interval [0; T]. Never-
theless, Zhang [26] gave an example which indicates that the initial condition u(0) = u0
(except u0 = 0 ) is not suitable for studying the existence of continuous solution of (1.1),
when the function f is continuous on [0; T] � R: Accordingly, “an [ 23] considered this
problem with f which satis�es the following conditions:

(A.1) f (x; t ) and xaf (x; t ) are continuous on(0; T] � R and [0; T] � R respectively,

(A.2) xaf (x; u0)
�
�
x=0 =

u0

�(1 � a)
.

In [23], it is proved that the condition (A.2) is necessary for the existence of the
continuous solution of problem (1.1). The author also gave a partial answer to the question
of the existence of continuous solutions to (1.1). Problem (1.1) represents a system,
accordingly the initial condition must be independent of the tools we analyze. Based
on this view, after a discussion with Manuel D. Ortigueira (see also [18, 19]) we draw a
conclusion that it would be more accurate to discuss the nonexistence of a continuous
solution of (1.1) instead of querying the suitability of the initial datum. In fact, if there
were a continuous solutionu of (1.1) when f is continuous on[0; T] � R; then by using the
compositional relation u (x) = I aD au(x) proved in Proposition 2.4 in [5] and u 2 C[0; T];
D au 2 C[0; T]; it would be shown that

u (x) =
1

� ( a)

Z x

0

f (�; u (� ))

(x � � )1� a d�; x 2 [0; T] : (1.2)

Thus, by the continuity of f (x; u(x)) on [0; T] we obtain,

0 6= u0 = lim
x! 0+

u(x) =
1

�( a)

Z 1

0

lim x! 0+ xaf (xt; u (xt ))
(1 � t)1� a dt = 0 ;

which yields a contradiction. This implies that problem ( 1.1) with continuous right-hand
side and initial condition u(0) = u0 6= 0 does not have a continuous solutionu(x) on the
closed interval.
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In the following section, under the conditions (A.1) -(A.2) , we �rst prove the existence
of continuous solutions of (1.1) by using Leray-Schauder alternative. However, as seen in
the sequel, this theorem does not inform us about the existence interval of the solution. In
the literature, there are some researchers (e.g. [3,10] and references therein) who worked on
the existence interval and maximal existence interval of the solution for certain fractional
di�erential equations. For example, Mustafa and Baleanu [3] presented a method by virtue
of Leray-Schauder alternative to gain a better estimate for the existence interval of the
continuous solutions to the problem they considered. Such an approach cannot be applied
directly to the analysis of (1.1) hence, developing a new technique and using Schauder's
�xed point theorem, we prove a Peano-type existence theorem for (1.1) which explicitly
shows the existence interval of the solution.

For the uniqueness of problems similar to (1.1), there exist some Nagumo-type unique-
ness results (see, for example, [7, 11, 15, 22]) which were proved by the technique and
approach developed by Diaz [6]. Apart from the Nagumo-type conditions, for the func-
tions satisfying certain conditions, Diethelm [7] and Odibat [17] employed fractional mean
value theorems to establish the uniqueness. We verify the existence and uniqueness of the
continuous solution of (1.1) when the function f ful�lls a Nagumo-type condition. Unlike
the techniques used in the book [1], in this paper, we present a novel technique to prove
the uniqueness of (1.1) by combining with a fractional mean value theorem for functions
u 2 C[0; T] satisfying the inclusions,D au 2 C(0; T] and xaD au 2 C[0; T].

2. Preliminaries and main results

Before proceeding to study problem (1.1), we remind some basic facts from functional
analysis. At �rst, we give a lemma which shows the equivalence of the solutions of problem
under consideration and solutions of the corresponding integral equation (1.2) (see, [23,
24]).

Lemma 2.1. Under the conditions of (A.1) -(A.2) , u 2 C[0; T] is a solution of problem
(1.1) if and only if u 2 C[0; T] is a solution of (1.2).

Let us de�ne the operator M : C[0; T] 7! C[0; T] associated with integral equation (1.2)
as follows:

M u (x) :=
1

� ( a)

Z x

0

f (�; u (� ))

(x � � )1� a d�; x 2 [0; T] : (2.1)

Since, the �xed points of the operator M coincide with the solutions of integral equation
(1.2), our goal is to �nd out the �xed points of operator M by applying following theorems
[4,8,9].

Theorem 2.2 (Schauder's �xed-point theorem). Let X be a real Banach space,B � X
nonempty closed bounded and convex,M : B ! B compact. Then, M has a �xed point.

Remark 2.3. In applications, it is usually too di�cult or impossible to establish a set
B so that M (B ) � B (see, [8]). Therefore, it will be convenient to consider operator M
that maps the whole spaceX into X to overcome this di�culty. The following result is
intimately associated with what we stated above.

Theorem 2.4 (Leray-Schauder alternative). Let X be normed linear space andM : X !
X be a completely continuous (compact) operator. Then, either there existsu 2 X such
that

u = M u

or the set
E(M ) := f u 2 X : u = � M (u) for a certain � 2 (0; 1)g (2.2)

is unbounded.
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The compactness of operatorM was proved previously by Theorem 2.5 in [23], therefore
it is su�cient to show that remaining conditions of the �xed point theorems given above
will be ful�lled. The �rst existence theorem for problem ( 1.1) is as follows:

Theorem 2.5. Let conditions (A.1) -(A.2) be satis�ed for 0 < T < 1 . Moreover, assume
that there exists a positive real numberM such that

M = sup
(x;t )2 [0;T ]� R

�
�
�
�x

af (x; t ) �
u0

�(1 � a)

�
�
�
� :

Then, problem (1.1) admits at least one continuous solutionu 2 C([0; T]).

Proof. We employ Leray-Schauder alternative and it is su�cient to show that the set
E(M ) de�ned in ( 2.2) is bounded. For an arbitrary u 2 E(M ) one has

ju(x)j � �
1

� ( a)

�
�
�
�
�

Z x

0

f (�; u (� ))

(x � � )1� a d�

�
�
�
�
�

<
1

� ( a)

�
�
�
�
�

Z x

0

f (�; u (� )) � � � a u0
�(1 � a) + � � a u0

�(1 � a)

(x � � )1� a

�
�
�
�
�

� M �(1 � a) +
ju0j

�(1 � a)�( a)

Z x

0

1

� a (x � � )1� a d�

= M �(1 � a) + ju0j :

Thus, for any u 2 E(M ) we get

sup
x2 [0;T ]

ju(x)j < M �(1 � a) + ju0j ;

which yields that E(M ) is bounded. As a result of Leray-Scauder alternative, (1.1) admits
at least one solution in C[0; T]: �

We now, give a mean value theorem for RL derivative to establish existence and unique-
ness results for problem (1.1). For the proof of this theorem, we follow the path outlined
in [7] and [17].

Lemma 2.6. Let u 2 C[0; T] with D au 2 C(0; T] and xaD au 2 C[0; T] for 0 < a < 1:
Then, there exists a function � (x); � : [0; T] ! (0; T) with 0 < � (x) < x such that

u(x) = �(1 � a)( � (x))aD au(� (x))

is ful�l led for all x 2 [0; T].

Proof. By using the fact u (x) = I aD au(x) and by mean value theorem of integral calculus
we have,

u(x) =
1

� ( a)

Z x

0

D au(� )

(x � � )1� a d�

=
1

� ( a)

Z x

0

� aD au(� )

� a (x � � )1� a d�

=
(� (x))aD au(� (x))

� ( a)

Z x

0

1

� a (x � � )1� a d�

=� (1 � a) ( � (x))aD au(� (x)) ;

where � = � (x) 2 (0; x) for all x 2 [0; T]: �



1722 M. “an, U. Sert

Remark 2.7. In [17], the dependence of� on x was not clearly expressed. Essentially,
� can be considered as a function ofx. To see this, let u(x) = 1 + x2. It follows from
Lemma 2.6 that

1 + x2 = �(1 � a)� a

 
� � a

�(1 � a)
+

� 2� a

�(3 � a)

!

= 1 +
2� 2

(1 � a)(2 � a)
:

From last equality, we get

� =

s
(1 � a)(2 � a)

2
x 2 (0; x);

which shows that � is a function depending onx.

In the following, we present a Peano-type existence theorem for problem (1.1), We use
Theorem 2.2 to prove the existence of the continuous solution of (1.1).

Theorem 2.8. Let (A.1) is satis�ed and r; T be �xed positive real numbers. Moreover,
suppose that there exists a positive real numberM � such that

�
�
�
�x

af (x; t ) �
u0

�(1 � a)

�
�
�
� � M � max

�
x;

jt � u0j
r

�
(2.3)

holds for all x 2 [0; T] and for all t 2 [u0 � r; u 0 + r ] : Then, (1.1) has at least one
continuous solution on [0; T0]; where

T0 :=

8
<

:

r
M � �(1 � a) ; if M � �(1 � a) � r;

T ; if M � �(1 � a) � r:

Proof. Let us �rst construct an appropriate closed convex ball of C([0; T]) to verify the
conditions of Theorem 2.2. According to inequality ( 2.3) let us assume that

�
�
�
�x

af (x; t ) �
u0

�(1 � a)

�
�
�
� � M � x (2.4)

is ful�lled for all x 2 [0; T] and for all t 2 [u0 � r; u 0 + r ] :
We de�ne the ball

B r (u0) �
�
u 2 C[0; T0] : sup

x2 [0;T0 ]
ju(x) � u0j � r

	

where M � �(1 � a) � r . Then, for any u 2 B r (u0); from (2.4) one has

jM u (x) � u0j �
1

� ( a)

Z x

0

�
�
�f (�; u (� )) � � � a u0

�(1 � a)

�
�
�

(x � � )1� a d�

=
1

� ( a)

Z x

0

�
�
� � af (�; u (� )) � u0

�(1 � a)

�
�
�

� a (x � � )1� a d�

�
M �

� ( a)

Z x

0

�

� a (x � � )1� a d�

� M � jxj �(2 � a);

estimating the right side of the above inequality by using the fact: �(2 � a) < �(1 � a) for
all a 2 (0; 1), then we get

jM u (x) � u0j � M � T0�(1 � a):

It follows from the last inequality and by the de�nition of T0; that

sup
x2 [0;T0 ]

jM u (x) � u0j < M � �(1 � a)T0 � r: (2.5)
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On the other hand, if
�
�
�
�x

af (x; t ) �
u0

�(1 � a)

�
�
�
� �

M �

r
jt � u0j (2.6)

holds for all x 2 [0; T] and for all t 2 [u0 � r; u 0 + r ] ; we construct B r such that

B r (u0) �
�
u 2 C[0; T] : sup

x2 [0;T ]
ju(x) � u0j � r

	

for M � �(1 � a) � r: It follows from ( 2.6),

jM u (x) � u0j �
1

� ( a)

Z x

0

�
�
� � af (�; u (� )) � u0

�(1 � a)

�
�
�

� a (x � � )1� a d�

�
M �

r � ( a)

Z x

0

ju(� ) � u0j

� a (x � � )1� a d�

�
M �

�( a)

Z x

0

1

� a (x � � )1� a d�:

for any u 2 B r and for all x 2 [0; T]: So, we �nd that

sup
x2 [0;T ]

jM u (x) � u0j � M � �(1 � a) � r: (2.7)

From (2.5) and (2.7), we attain M (B r (u0)) � B r (u0) which completes the proof. �

Theorem 2.9 (Existence and Uniqueness). Under the conditions of Theorem2.5, suppose
that the inequality

xa jf (x; t 1) � f (x; t 2)j �
1

�(1 � a)
jt1 � t2j (2.8)

holds for all x 2 [0; T], t1; t2 2 R and 0 < a < 1. Then problem (1.1) admits a unique
continuous solution on [0; T]:

Proof. We proved the existence of the solution in Theorem2.5. Thus for the uniqueness,
let (1.1) has two di�erent continuous solutions u1 and u2: We initially assume ! (x) 6� 0;
where

! (x) :=

(
ju1(x) � u2(x)j ; x > 0

0 ; x = 0

It is easily seen that ! (x) is nonnegative for all x 2 [0; T] and continuous for all these
x values exceptx = 0 : For the continuity of ! (x) at x = 0 ; using variable substitution
� = xt and condition (A.1) respectively, we have

0 � lim
x! 0+

! (x) = lim
x! 0+

1
�( a)

�
�
�
�
�

Z x

0

f (�; u 1 (� )) � f (�; u 2 (� ))

(x � � )1� a d�

�
�
�
�
�

� lim
x! 0+

1
�( a)

�
�
�
�
�

Z 1

0

(xt )a �
f (xt; u 1 (xt )) � f (�; u 2 (xt ))

�

ta (1 � t)1� a dt

�
�
�
�
�

�
1

�( a)

Z 1

0

lim x! 0+

�
� (xt )a �

f (xt; u 1 (xt )) � f (�; u 2 (xt ))
� ��

ta (1 � t)1� a dt

= 0

which simply means that lim x! 0+ ! (x) = 0 = w(0):
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It is obvious that there exists a � 2 (0; T] such that ! (� ) 6= 0 ; i.e. ! (� ) > 0: By using
Lemma 2.6 and inequality (2.8), we get

0 < ! (� ) = ju1(� ) � u2(� )j

= �(1 � a) j� a
� D a(u1 � u2)( � � )j

= �(1 � a) jf (� � ; u1 (� � )) � f (� � ; u2 (� � )) j

� j u1(� � ) � u2(� � )j = ! (� � )

for some � � 2 (0; � ): Applying the same procedure for the point � � we �nd that, there
exists some� 2 2 (0; � � ) such that 0 < ! (� ) � ! (� � ) � ! (� 2): Continuing in the same way,
we construct a sequencef � ng1

n=1 � [0; � ) with � 1 = � � satisfying � n ! 0 and

0 < ! (� ) � ! (� 1) � ! (� 2) � ::: � ! (� n ) � ::: (2.9)

On the other hand, since! (x) is continuous at x = 0 and � n ! 0; then ! (� n ) ! ! (0) = 0
that contradicts with ( 2.9). Hence! (x) � 0; namely IVP ( 1.1) admits a unique continuous
solution. �

It is interesting to note that there are some other techniques and theorems (see, for
example [7] and [22]) that enable us to replace a positive �xed real number larger than
Nagumo constant or an arbitrary positive real number instead of Nagumo constant so
that the corresponding IVPs admit a unique solution. However, the mentioned techniques
and theorems could not be applied to problem (1.1), namely there does not exist a larger
number than 1

�(1 � a) in (2.8) which can be replaced instead of 1
�(1 � a) to guarantee the

uniqueness of the continuous solution of (1.1). The following example may clearly express
the foregoing discussion.

Example 2.10. Let us consider the function, f � (x; t ) := �( � +1)
�(1 � a+ � ) x � a (t + k) where k =

�( � � a+1) � �(1+ � )�(1 � a)
�(1+ � )�(1 � a) ; � > 0 and u0 = 1 in problem (1.1). It is clear that conditions

(A.1) and (A.2) are satis�ed. However, inequality (2.8) does not hold for f � (x; t ), since
�( � +1)

�(1 � a+ � ) replaces instead of 1
�(1 � a) in (2.8) and �( � +1)

�(1 � a+ � ) > 1
�(1 � a) for � > 0 and a 2 (0; 1):

That is to say, the solution of (1.1) may not be unique. Indeed, (1.1) has in�nitely many
solutions u(x) = cx� + 1 ; where c is an arbitrary real number. Furthermore, it is to be
pointed out that �( � +1)

�(1 � a+ � ) ! 1
�(1 � a) and f � (x; t ) ! f (x; t ) = x � a t

�(1 � a) when � ! 0 and that,

for f (x; t ) = x � a t
�(1 � a) ; (1.1) with u0 = 1 admits a unique solution in the form u(x) = 1 :
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1. Introduction and de�nitions

Let A denote the class of functions of the form

f (z) = z +
1X

n=2

anzn ; (1.1)

which are analytic in the open unit disc D = f z 2 C : jzj < 1g. Let S denote the subclass
of A which are univalent in D.

The hadamard product or convolution of two functions f (z) = z +
P 1

n=2 anzn 2 A and
g(z) = z +

P 1
n=2 bnzn 2 A denoted by f � g, is de�ned by

(f � g) (z) = z +
1X

n=2

anbnzn

for z 2 D:
In 1975, Ruscheweyh [10] introduced a linear operator

D �
Rf (z) =

z

(1 � z) � +1 � f (z) = z +
1X

n=2

' n (� ) anzn (1.2)

with

' n (� ) =
(� + 1) n� 1

(n � 1)!

� Corresponding Author.
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for � > � 1 and (a)n is Pochhammer symbol de�ned by

(a)n =
� ( a + n)

� ( a)

for a 2 C and N = f 1; 2; 3; : : :g :
Notice that

D0
Rf (z) = f (z);

D1
Rf (z) = zf

0
(z)

and

Dm
R f (z) =

z
�
zm� 1f (z)

� m

m!
= z +

1X

n=2

� ( n + m)
� ( m + 1) ( n � 1)!

anzn

for all � = m 2 N0 = f 0; 1; 2; : : :g :
In recent years, several authors obtained many interesting results for various subclasses

of analytic functions de�ned by using the Ruscheweyh derivative operator.
Given two functions f and F , which are analytic in the unit disk D, we say that the

function f is subordinated to F , and write f � F or f (z) � F (z), if there exists a
function ! analytic in D such that j! (z)j < 1 and ! (0) = 0 , with f (z) = F

�
! (z)

�
in D.

In particular, if F is univalent in D, then f (z) � F (z) if and only if f (0) = F (0) and
f (D) � F (D) :

Let P denote the class of all functions of the form p(z) = 1 +
P 1

n=1 pnzn that are
analytic in D and for which < p(z) > 0 in D.

For arbitrary �xed numbers A and B with � 1 � B < A � 1, Janowski [5] introduced
the classP (A; B ), de�ned by the subordination principle as follows:

P (A; B ) =
�

p : p(z) �
1 + Az
1 + Bz

; p(z) = 1 + p1z + p2z2 + : : :
�

:

Also, if we take A = 1 and B = � 1, we obtain the well-known classP of functions with
positive real part.

In 2006, Polatoglu [8] introduced the classP (A; B; � ) of the generalization of Janowski
functions as follows:

P (A; B; � ) =
�

p : p(z) � (1 � � )
1 + Az
1 + Bz

+ �; p (z) = 1 + p1z + p2z2 + : : :
�

: (1.3)

for arbitrary �xed numbers A and B with � 1 � B < A � 1, 0 � � < 1, z 2 D:
Let S� and C be the subclasses ofS of all starlike functions and convex functions in D,

respectively. We also denote byS� (� ) and C(� ) the class of starlike functions of order�
and the class of convex functions of order� , where 0 � � < 1, respectively.

In particular, we note that S� := S� (0) and C := C(0).
In [9], Reade introduced the classCS� of close-to-star functions as follows:

CS� =
�

f 2 A : <
f (z)
g (z)

> 0 and g 2 S�
�

for all z 2 D. Also, we denote byCS� (� ) the class of close-to-star functions of order�
where 0 � � < 1. ( See Goodman [3]).

In [6], Kaplan introduced the classCCof close-to-convex functions as follows:

CC=

(

f 2 A : <
f

0
(z)

g0 (z)
> 0 and g 2 C

)
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for all z 2 D. Also, we denote byCC(� ) the class of close-to-convex functions of order�
where 0 � � < 1. ( See Goodman [2]).

Clearly, we note that CS� := CS� (0) and CC:= CC(0).
f 2 A is an � -spirallike function , SP� , if and only if

<

"

ei� zf
0
(z)

f (z)

#

> 0

for somej� j < �
2 , z 2 D: The class of� -spirallike functions was introduced by ’pa£ek in

[11].
Also, f 2 SP� if and only if there exists a function p 2 P such that

f (z) = z exp
�

cos�e � i�
Z z

0

p(t) � 1
t

dt
�

:

We note that the extremal function for the class of SP�

f (z) =
z

(1 � z)2s where s = e� i� cos�;

the � -spiral koebe function.
f 2 A is an � -Robertson function , R� , if and only if

<

"

ei�

 

1 +
zf

00
(z)

f 0 (z)

!#

> 0

for somej� j < �
2 , z 2 D:

Lemma 1.1. f 2 R� if and only if there exists a function p 2 P such that

f 0(z) = exp

(

e� i�
Z z

0

p(t) cos� � ei�

t cos�
dt

)

(1.4)

for some j� j < �
2 , z 2 D:

Proof. Suppose that f 2 R� . Since it is a � -Robertson function, there exists a function
p 2 P such that

ei�

 

1 +
zf

00
(z)

f 0 (z)

!

= p(z) cos�
�

j� j <
�
2

; z 2 D
�

:

From this equality, we can easily obtain (1:4).
Conversely, suppose that(1:4) holds. If we take the logarithmic derivative of (1:4), f (z)

belongs toR� . So that, the proof is completed. �

We note that f 2 R� if and only if zf
0

2 SP� :
f 2 A is an � -close-to-spirallike function , CSP� , if there exists a function g 2 SP� such

that

<
�

f (z)
g (z)

�
> 0

for somej� j < �
2 , z 2 D:

We note that the extremal function for the class of CSP�

f (z) =
z + z2

(1 � z)2s+1 ; where s = e� i� cos�;

the � -close-to-spiral koebe function.
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f 2 A is an � -close-to-Robertson function ,CR� , if there exists a function g 2 R� such
that

<

"
f

0
(z)

g0 (z)

#

> 0

for somej� j < �
2 , z 2 D:

Haidan [4] introduced the classSP� (b) of � -spirallike functions of complex order b as
follows:

SP� (b) =

(

f 2 A : <

(

1 +
ei�

bcos�

 
zf

0
(z)

f (z)
� 1

!)

> 0

)

for somej� j < �
2 , b 2 C � f 0g; z 2 D:

Haidan [4] introduced the classR� (b) of � -Robertson functions of complex orderb as
follows:

R� (b) =

(

f 2 A : <

(

1 +
ei�

bcos�

 
zf

00
(z)

f 0 (z)

!)

> 0

)

for somej� j < �
2 , b 2 C � f 0g; z 2 D:

Now, respectively, we introduce the classes of� -close-to-spirallike functions of complex
order b and � -close-to-Robertson functions of complex orderb, denoted by CSP� (b) and
CR� (b) , as follows:

CSP� (b) =
�

f 2 A : <
�

1 +
1
b

�
f (z)
g (z)

� 1
��

> 0 ; g 2 SP�
�

and

CR� (b) =

(

f 2 A : <

(

1 +
1
b

 
f

0
(z)

g0 (z)
� 1

!)

> 0 ; g 2 R�

)

for somej� j < �
2 , b 2 C � f 0g; z 2 D:

De�nition 1.2. The class of generalized Janowski functions which are de�ned by Ruscheweyh
derivative operator in z 2 D, denoted by JR�

b (�; �; �; A; B ), is de�ned as

JR�
b (�; �; �; A; B ) =

(

f 2 A : 1 +
ei�

bcos�

 
D �

Rf (z)

D �
Rg(z)

� 1

!

� (1 � � )
1 + Az
1 + Bz

+ � ; g 2 SP�

)

for somej� j < �
2 , b 2 C � f 0g; � > � 1; � > � 1, 0 � � < 1, � 1 � B < A � 1, z 2 D:

Nothing that the class JR�
b (�; �; �; A; B ) include several subclasses which have impor-

tant role in the analytic and geometric function theory.
By specializing the parameters� , � , � , � , b and A; B , we obtain the following subclasses

studied earlier:

(1) CS�
b (�; A; B ) := JR0

b (0; 0; �; A; B ) is the class of the generalized Janowski type
close-to-star functions of complex orderb,

(2) CS�
b (A; B ) := JR0

b (0; 0; 0; A; B ) is the class of the Janowski type close-to-star func-
tions of complex orderb,

(3) CS� (A; B ) := JR0
1 (0; 0; 0; A; B ) is the class of the Janowski type close-to-star func-

tions,
(4) CS� (� ) := JR0

1 (0; 0; 0; 1 � 2�; � 1) is the class of the close-to-star functions of order
� ,

(5) CS� := JR0
1 (0; 0; 0; 1; � 1) is the class of the close-to-star functions,

(6) CCb (�; A; B ) := JR0
b (1; 0; �; A; B ) is the class of the generalized Janowski type

close-to-convex functions of complex orderb,
(7) CCb (A; B ) := JR0

b (1; 0; 0; A; B ) is the class of the Janowski type close-to-convex
functions of complex orderb,
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(8) CC(A; B ) := JR0
1 (1; 0; 0; A; B ) is the class of the Janowski type close-to-convex

functions,
(9) CC(� ) := JR0

1 (1; 0; 0; 1 � 2�; � 1) is the class of the close-to-convex functions of
order � ,

(10) CC:= JR0
1 (1; 0; 0; 1; � 1) is the class of the close-to-convex functions.

Lemma 1.3. [1] If the function p(z) of the form

p(z) = 1 +
1X

n=1

pnzn

is analytic in D and

p(z) �
1 + Az
1 + Bz

;

then jpn j � A � B; for n 2 N; � 1 � B < A � 1:

Theorem 1.4. [3] If f 2 SP� , then

jan j �
n� 1Y

k=1

jk + 2s � 1j
k

;

where s = e� i� cos�; j� j < �
2 , z 2 D:

2. Subordination result and their consequences

Theorem 2.1. f (z) 2 JR�
b (�; �; �; A; B ) if and only if

D �
Rf (z)

D �
Rg(z)

� 1 �
(1 � � ) (A � B ) be� i� cos� z

1 + Bz
: (2.1)

Proof. Suppose that f 2 JR�
b (�; �; �; A; B ). Using the subordination principle, we write

1 +
ei�

bcos�

 
D �

Rf (z)

D �
Rg(z)

� 1

!

= (1 � � )
1 + A! (z)
1 + B! (z)

+ �: (2.2)

After simple calculations, we get

ei�

bcos�

 
D �

Rf (z)

D �
Rg(z)

� 1

!

=
(1 � � ) (A � B ) ! (z)

1 + B! (z)
:

Thus, this equality is equivalent to (2:1). Similarly, the other side is proved. �

In Theorem 2.1, if we choice special values for� , � , � , � , b and A; B we get the following
corollaries.

Corollary 2.2. f (z) 2 CSP� (b) if and only if

f (z)
g(z)

� 1 �
2be� i� cos� z

1 � z

and this result is as sharp as the function

2be� i� cos� z

(1 � z)2s+1 ; where s = e� i� cos�:

Proof. We let � = � = � = 0 and A = 1 ; B = � 1 in Theorem 2.1. �
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Corollary 2.3. f (z) 2 CS� (A; B ) if and only if

f (z)
g(z)

� 1 �
(A � B ) z

1 + Bz

and this result is as sharp as the function

1 + Az
1 + Bz

:
z

(1 � z)2 :

Proof. We let � = � = � = � = 0 and b = 1 in Theorem 2.1. �

Corollary 2.4. f (z) 2 CS� if and only if

f (z)
g(z)

� 1 �
2z

1 � z

and this result is as sharp as the function

1 + z
1 � z

:

Proof. We let � = � = � = � = 0 and b = 1 ; A = 1 ; B = � 1 in Theorem 2.1. �

Corollary 2.5. f (z) 2 R� (b) if and only if

zf 0(z)
g(z)

� 1 �
2be� i� cos� z

1 � z
:

Proof. We let � = 1 ; � = � = 0 and A = 1 ; B = � 1 in Theorem 2.1. �

Corollary 2.6. f (z) 2 CC(A; B ) if and only if

zf 0(z)
g(z)

� 1 �
(A � B ) z

1 + Bz
:

Proof. We let � = � = � = 0 and � = 1 ; b = 1 in Theorem 2.1. �

Corollary 2.7. f (z) 2 CCif and only if

zf 0(z)
g(z)

� 1 �
2z

1 � z

and this result is as sharp as the function

1 + z
1 � z

:

Proof. We let � = � = � = 0 and � = 1 ; b = 1 ; A = 1 ; B = � 1 in Theorem 2.1. �

3. Coe�cient estimates and their consequences

Lemma 3.1. If the function � (z) of the form

� (z) = 1 +
1X

n=1

� nzn

is analytic in D and

� (z) � (1 � � )
1 + Az
1 + Bz

+ �;

then
j� n j � (A � B ) (1 � � ) (3.1)

for 0 � � < 1; � 1 � B < A � 1; n 2 N; z 2 D:



1732 Ö.Ö. K�l�ç, N. Ero§lu

Proof. Suppose that � (z) � (1 � � ) 1+ Az
1+ Bz + � for � (z) = 1 +

P 1
n=1 � nzn : Using the

subordination principle, we write

� (z) = (1 � � )
1 + A! (z)
1 + B! (z)

+ �: (3.2)

From (3:2), we get

� (z) =
� (z) � �
(1 � � )

=
1 + A! (z)
1 + B! (z)

:

By using Lemma 1.3 for the above function� (z), we get
�
�
�
�

� n

1 � �

�
�
�
� � A � B:

This inequality is equivalent to (3:1): �

Theorem 3.2. If the function f (z) 2 A be in the classJR�
b (�; �; �; A; B ), then

jan j �
1

jbj ' n (� )
(3.3)

�

0

@jbj ' n (� )
n� 1Y

k=1

jk + 2s � 1j
k

+ ( A � B ) (1 � � )

2

4
n� 1X

m=1

' n� m (� )
n� (m+1)Y

k=1

jk + 2s � 1j
k

3

5

1

A ;

wheres = e� i� cos�; j� j < �
2 , b 2 C� f 0g; � > � 1; � > � 1, 0 � � < 1, � 1 � B < A � 1,

z 2 D:

Proof. Sincef 2 JR�
b (�; �; �; A; B ), there are analytic functions g; � : D 7�! D such that

g(z) = z +
P 1

n=2 bnzn 2 SP� , � (z) = 1 +
P 1

n=1 � nzn and ! (z) is a Schwarz function as in
Lemma 3.1 such that

1 +
ei�

bcos�

 
D �

Rf (z)

D �
Rg(z)

� 1

!

= (1 � � )
1 + A! (z)
1 + B! (z)

+ � = � (z) (3.4)

for z 2 D: Then (3:4) can be written as

D �
Rf (z) = f 1 + sb[� (z) � 1]gD �

Rg(z)

or

z +
1X

n=2

' n (� ) anzn = z +
1X

n=2

(

' n (� ) bn + sb
n� 1X

m=1

' n� m (� ) bn� m � m

)

zn :

Equating the coe�cients of like powers of z, we get

' 2 (� ) a2 = ' 2 (� ) b2 + sb � 1;

' 3 (� ) a3 = ' 3 (� ) b3 + sb[' 2 (� ) b2� 1 + � 2]
and

' n (� ) an = ' n (� ) bn + sb[' n� 1 (� ) bn� 1 � 1 + ' n� 2 (� ) bn� 2 � 2 + : : : + � n� 1] :

By using Lemma 3.1 and Theorem 1.4, we get(3:3): �

Corollary 3.3. Let f (z) 2 A be in the classCSP� (b), then

jan j �
1
jbj

0

@jbj
n� 1Y

k=1

jk + 2s � 1j
k

+ 2

2

4
n� 1X

m=1

n� (m+1)Y

k=1

jk + 2s � 1j
k

3

5

1

A ;

where s = e� i� cos�; j� j < �
2 , b 2 C � f 0g; z 2 D:

Proof. In Theorem 3.2, we take� = � = � = 0 and A = 1 ; B = � 1: �
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Corollary 3.4. [7] Let f (z) 2 A be in the classCS� (A; B ), then

jan j � n +
(A � B ) (n � 1) n

2
;

where � 1 � B < A � 1, z 2 D:

Proof. In Theorem 3.2, we take� = � = � = � = 0 and b = 1 : �

Corollary 3.5. [7] Let f (z) 2 A be in the classCS� , then

jan j � n2;

where z 2 D:

Proof. In Theorem 3.2, we take� = � = � = � = 0 and b = 1 : �

Corollary 3.6. Let f (z) 2 A be in the classR� (b), then

jan j �
1

jbj n

0

@jbj
n� 1Y

k=1

jk + 2s � 1j
k

+ 2
n� 1X

m=1

n� (m+1)Y

k=1

jk + 2s � 1j
k

1

A ;

where s = e� i� cos�; j� j < �
2 , b 2 C � f 0g; z 2 D:

Proof. In Theorem 3.2, we take� = 1 ; � = � = 0 and A = 1 ; B = � 1: �

Corollary 3.7. [7] Let f (z) 2 A be in the classCC(A; B ), then

jan j � 1 +
(A � B ) (n � 1)

2
;

where � 1 � B < A � 1, z 2 D:

Proof. In Theorem 3.2, we take� = 1 ; � = � = � = 0 and b = 1 : �

Corollary 3.8. [7] Let f (z) 2 A be in the classCC, then

jan j � n;

where z 2 D:

Proof. In Theorem 3.2, we take� = 1 ; � = � = � = 0 and A = 1 ; B = � 1; b = 1 : �
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Abstract
In this study, a matrix Rv is de�ned, and two closed form expressions of the matrixRn

v ,
for an integer n � 1, are evaluated by the matrix functions in matrix theory. These
expressions satisfy a connection between the generalized Fibonacci and Lucas numbers
with the Pascal matrices. Thus, two representations of the matrix Rn

v and various forms
of matrix (Rv+ q4 I )n are studied in terms of the generalized Fibonacci and Lucas numbers
and binomial coe�cients. By modifying results of 2 � 2 matrix representations given in
the references of our study, we give various3� 3 matrix representations of the generalized
Fibonacci and Lucas sequences. Many combinatorial identities are derived as applications.
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1. Introduction

The generalized Fibonacci sequencef Un (p; q)gn� 0 and the generalized Lucas sequence
f Vn (p; q)gn� 0, for an integer n, are de�ned by the second order recurrence relation

Un = pUn� 1 � qUn� 2 U0 = 0 ; U1 = 1 ; (1.1)

Vn = pVn� 1 � qVn� 2 V0 = 2 ; V1 = p; (1.2)

where p and q
�
p 6= 0 and q 6= 0 ; p2 6= 4q

�
are arbitrary complex coe�cients. From the

sequences
f Ungn� 0 := f Un (p; q)gn� 0 and f Vngn� 0 := f Vn (p; q)gn� 0

we derive;
Fibonacci f Fngn� 0 := f Un (1; � 1)gn� 0 and Lucas f L ngn� 0 := f Vn (1; � 1)gn� 0,
Pell f Pngn� 0 := f Un (2; � 1)gn� 0 and Pell-Lucas f Qngn� 0 := f Vn (2; � 1)gn� 0,
Jacobsthal f Jngn� 0 := f Un (1; � 2)gn� 0 and Jacobsthal Lucasf j ngn� 0 := f Vn (2; � 1)gn� 0,
sequences.

Any n-th entries of the sequencesf Ungn� 0 and f Vngn� 0 are generalized Fibonacci num-
ber Un and Lucas numberVn , respectively, are given by

Un = ( � n � � n ) =(� � � ) ; Vn = � n + � n ; (1.3)

Email addresses: koken�kri@gmail.com, fkoken@konya.edu.tr (F. Koken)
Received: 09.11.2018; Accepted: 23.12.2019



1736 F. Koken

where � =
�
p +

p
p2 � 4q

�
=2 and � =

�
p �

p
p2 � 4q

�
=2 are the roots of the equation

x2 � px+ q = 0 . These formulas given in (1.3) are called Binet's formulas [18]. Throughout
this paper, we let n be an arbitrary positive integer, � = p2 � 4q, � =

�
p +

p
�

�
=2,

and � =
�
p �

p
�

�
=2, where p and q

�
p 6= 0 and q 6= 0 ; p2 6= 4q

�
are arbitrary complex

coe�cients.
Many authors have studied various fundamental properties, matrix representations, and

sums of their squares or products of consecutive numbersUn and Vn (see, e.g., [2,4,8,12,
18,19]).

Among the generalized Fibonacci and Lucas sequences, the Fibonaccif Fngn� 0 and
Lucas f L ngn� 0 sequences have achieved a kind of celebrity status, and have been studied
extensively in number theory, matrix theory, and applied mathematics (see, e.g., [3, 5, 6,
13,14,17,20,21]).

In [5] and [6], the authors relate with altering sums of squares of odd and even terms
of the Fibonacci sequence and altering sums of their products to the product of the ap-
propriate Fibonacci and Lucas numbers. In [17], the authors give elementary methods
to investigate the reciprocal sums of products of two Fibonacci numbers in several ways.
Similar formulas for other special sequences such as the Pell, Pell Lucas, Jacobsthal, and
Jacobsthal Lucas sequences are obtained by the same methods in [7,9,10].

In [1] and [2], H. Belbachir and F. Bencherif give a number of formulas for sums and
alternating sums of product of the generalized Fibonacci and Lucas numbers. These
studies extend all results, and recover more easily as the methods in [5� 7,9,10]. In [8], Z.
ƒerin achieves explicit formulas for sums of products of a �xed number of the consecutive
generalized Fibonacci and Lucas numbers. These formulas are related to the results given
in [2], on the other hand, the author eliminates all restrictions.

An existing formula for any n-th power of a m � m matrix or particular matrices with
various matrix identities etc. can also be used to derive various combinatorial identities.
In [15], J. Mc Laughlin shows how to derive various combinatorial identities by using a
formula for any n-th power of a 2 � 2 matrix. As an illustration, the well-known 2 � 2
Fibonacci matrix Qn gives the ninety-�rst formula from Vajda's list in [ 21] and various
formulas can be similarly derived by this method. As other formulas for anyn-th power
of matrices of order2 , we see that many properties of the Fibonacci and Lucas sequences
are derived by the Fibonacci matrix Qn [20] and Lucas matrix Qn

L [14]. These properties
in the context of 2 � 2 matrices U(p; q) and V(p; q) associated with the numbersUn (p; q)
and Vn (p; q) are generalized by using the identities of these numbers in induction method,
it can be shown that the matricesUn (p; q) and V n (p; q) are the generalized Fibonacci and
Lucas matrices, all elements of which are related to indices of the numbersUn and Vn [4].
Also, several properties of the generalized Fibonacci sequencef Hk;n g are given by using
the same matrix methods [22].

In [19], Melham shows that anyn-th integer powers of the matrix R of order 3 is related
with the numbers Un (p; q), and applies some matrix functions to obtain new in�nite sums
to the matrix Rn �

n 2 Z+ �
, which is derived as

Rn =

0

@
q2U2

n � 1 q2Un � 1Un q2U2
n

� 2qUn � 1Un � q
�
U2

n + Un � 1Un +1
�

� 2qUn Un +1

U2
n Un Un +1 U2

n +1

1

A : (1.4)

In [16], the authors obtain a general polynomial identity in k variables, a closed form
expression for the entries of the powers of ak � k matrix is given by using this identity
for k � 2 an arbitrary positive integer. Various combinatorial identities are also derived
by using these results.

In [1], H. Belbachir and F. Bencherif derive a formula expressing the general term of a
linear recurrent sequence. This result generalizes the result of J. Mc Laughlin about the
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powers of a2 � 2 matrix in [ 15] to the case of am � m matrix, m � 2. These results
are used to derive various identities concerning the Fibonacci and Stirling numbers and
combinatorial relations.

In this work we aim to �nd di�erent relations between matrices containing sequences
alike the generalized Fibonacci and Lucas sequences. As far as we know in the litera-
ture, matrix representations of the generalized Fibonacci sequencef Ungn� 0 have been
introduced and investigated. We consider matrix representations of the generalized Lucas
sequencef Vngn� 0, which both establish various summation identities involving squares
of terms from the sequencesf Ungn� 0 and f Vngn� 0, and derive properties of the Lucas,
Pell Lucas, Jacobsthal Lucas numbers by taking advantage of the ideas introduced for the
Fibonacci, Pell, and Jacobsthal numbers in the literature.

2. The closed form expressions of the matrix Rn
v

Several generalizations of the Pascal matrix are de�ned in [23] and a number of the-
oretic properties associated with the generalized Fibonacci and Lucas sequences and the
Pascal-type matrix are studied in [3] and [19]. Unless otherwise stated,xn

ij ; i; j = 1 ; 2; 3
denotes the entry in the i -th row and j -th column of n-th powers of any matrix X of
order 3, we de�ne �rst and third column vectors, (un

i 1), (un
i 3), (vn

i 1), and (vn
i 3), i = 1 ; 2; 3,

including their squares or consecutive product of entries from the sequencesf Un (p; q)gn� 0
and f Vn (p; q)gn� 0, respectively;

(un
i 1) =

  
2

i � 1

!

(� qUn� 1)3� i U i � 1
n

! t

; (un
i 3) =

  
2

i � 1

!

(� qUn )3� i U i � 1
n+1

! t

; i = 1 ; 2; 3

and

(vn
i 1) =

  
2

i � 1

!

(� qVn� 1)3� i V i � 1
n

! t

; (vn
i 3) =

  
2

i � 1

!

(� qVn )3� i V i � 1
n+1

! t

; i = 1 ; 2; 3;

where
� a

b

�
denotes the binomial coe�cient. Now, let us consider a matrix Rv of order 3 as

Rv =

0

@
4q2 2pq2 p2q2

� 4pq � q
�
2p2 + �

�
� 2pq

�
p2 � 2q

�

p2 p
�
p2 � 2q

� �
p2 � 2q

� 2

1

A ; � = p2 � 4q; (2.1)

which includes all matrices considered as special cases like Lucas, Pell Lucas, and Jacob-
sthal Lucas matrices, etc. It is seen that the matrix Rv is related with column vectors�
un

ij

�
and

�
vn

ij

�
, j = 1 ; 3 such as

Rv (un
i 1) = ( vn

i 3) and Rv (vn
i 1) = � 2 (un

i 3) , for i = 1 ; 2; 3:

In addition, we present two closed form expressions ofh-th powers of the matrix Rv , one
of them is the matrix representation.

Theorem 2.1. Let Rh
v be anyh-th positive integer powers of matrix given in (2.1). Then,

R2n
v = � 2n

0

@
q2U2

2n� 1 q2U2n� 1U2n q2U2
2n

� 2qU2n� 1U2n � q
�
U2

2n + U2n� 1U2n+1
�

� 2qU2nU2n+1
U2

2n U2nU2n+1 U2
2n+1

1

A ; (2.2)

R2n� 1
v = � 2n� 2

0

@
q2V 2

2n� 2 q2V2n� 2V2n� 1 q2V 2
2n� 1

� 2qV2n� 2V2n� 1 � q
�
V 2

2n� 1 + V2n� 2V2n
�

� 2qV2n� 1V2n
V 2

2n� 1 V2n� 1V2n V 2
2n

1

A : (2.3)

Proof. By using the induction method on h 2 Z+ , (2.2) and (2.3) are proved according
to whether h is even or not.

Firstly, since RvRv = R2
v and R2

vRv = R3
v , the matrix R2

v for n = 1 in (2.2) and the
matrix R3

v for n = 2 in (2.3) are proved by computing the elementsr 2
i 1 and r 3

i 1, i = 1 ; 2; 3
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of the matrices R2
v and R3

v , respectively. Other elements can be showed similar to them.
The element r 2

11 is q2 �
p2 � 4q

� 2. Thus, by using p2 � 4q = � and U1 = 1 , we �nd
that r 2

11 = � 2q2. The element r 2
21 is � 2pq

�
� 4q + p2� 2. By using U2 = p, we see that

r 2
21 = � 2� 2qU2. The element r 2

31 is p2 �
p2 � 4q

� 2 = � 2U2
2 . So, the elementsr 2

i 1, i = 1 ; 2; 3
of the matrix R2

v are valid for n = 1 . By using U3 = p2 � q, and due to the manner in
which elements of the matrix R2

v are computed, we note that the matrix R2
v is true for

n = 1 .
Since R2

vRv = R3
v , the elements r 3

11 = q2� 2V 2
2 , r 3

21 = � 2q� 2V2V3, r 3
31 = � 2V 2

3 are
given by using V2 = p2 � 2q and V3 = p

�
p2 � 3q

�
. Then, the elementsr 3

i 1, i = 1 ; 2; 3 of
the matrix R3

v are valid for n = 2 . When other elements of the matrix R3
v are evaluated

by using V4 = p4 � 4p2q + 2q2, we note that the matrix R3
v is valid for n = 2 .

Now, we suppose that they are true forh � 2N , N � 2. Due to R2N
v Rv = R2N +1

v
or R2N � 1

v R2
v = R2N +1

v , by using the induction hypothesis and Rv or R2
v , we obtain the

R2N +1
v . Then, elementsr 2N +1

i 1 , i = 1 ; 2; 3 of R2N +1
v = R2N

v Rv are given with

r 2N +1
11 = q2 (pU2N � 2qU2N � 1)2 = q2V 2

2N ;

r 2N +1
21 = � 2q(pU2N � 2qU2N � 1) (pU2N +1 � 2qU2N ) = � 2qV2N V2N +1 ;

r 2N +1
31 = ( pU2N +1 � 2qU2N )2 = V 2

2N +1 ;

by using the recurrence relation given in (1.2) and Vn = 2Un+1 � pUn = Un+1 � qUn� 1.
All elements of the R2N +1

v can be proved similar to them.
By using the induction hypothesis and the R2

v , we can write R2N
v R2

v = R2(N +1)
v . Then,

the elementsr 2N +2
i 1 , i = 1 ; 2; 3 of the R2(N +1)

v are given by using the recurrence relation
given in (1.1), respectively, as

r 2N +2
11 = q2 (pU2N � qU2N � 1)2 = q2U2N +1 ;

r 2N +2
21 = � 2q(pU2N +1 � qU2N ) (pU2N � qU2N � 1) = � 2qU2N +2 U2N +1 ;

r 2N +2
31 = ( pU2N +1 � qU2N )2 = U2

2N +2 :

Other elements can be proved similar to them. Thus, theRh
v holds for all positive integer

h: �

Let us mention the properties of the matrix Rh
v ;

Remark 2.2. The entries r 2n
13 = q2r 2n

31 and r 2n� 1
13 = q2r 2n� 1

31 involve always the numbers
q2U2

2n and q2V 2
2n� 1, respectively. And also, the entry r h

33 involves the numbersU2
h+1 or

V 2
h+1 for even and oddh, respectively.

Remark 2.3. The entries r h
i 1, i = 1 ; 2; 3 of the matrix Rh

v are equal to the values of

� h

  
2

i � 1

!

(� qUh� 1)3� i U i � 1
h

!

and � h� 1

  
2

i � 1

!

(� qVh� 1)3� i V i � 1
h

!

; i = 1 ; 2; 3

in the expansions� 2n (Uh � qUh� 1)2 and � 2(n� 1) (Vh � qVh� 1)2 for even and oddh, re-
spectively. And also, the entriesr h

i 3, i = 1 ; 2; 3 of Rh
v are equal to the values of

� h

  
2

i � 1

!

(� qUh)3� i U i � 1
h+1

!

and � h� 1

  
2

i � 1

!

(� qVh)3� i V i � 1
h+1

!

; i = 1 ; 2; 3
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in the expansions� h (Uh+1 � qUh)2 and � h� 1 (Vh+1 � qVh)2 for even and oddh, respec-
tively. That is, for i = 1 ; 2; 3,

r h
i 1 = � h

  
2

i � 1

!

(� q)3� i U3� i
h� 1U i � 1

h

!

for even h;

r h
i 1 = � h� 1

  
2

i � 1

!

(� q)3� i V 3� i
h� 1V i � 1

h

!

for odd h;

where
� a

b

�
is a positive integer known as a binomial coe�cient. The matrix Rh

v can be
expressed as a Pascal-type matrix [23].

The other closed form expression is a polynomial representation,Rh
v = c0I + c1Rv+ c2R2

v ,
the coe�cients c0, c1, and c2 are given with the numbersUh and Vh based on the eigenvalues
� j , j = 1 ; 2; 3 of the matrix Rv . Let us suppose that it is a function f (x) = xn , n 2 Z+ ,
then, polynomial expressionf (Rv) gives Rn

v as

f (Rv) =
3X

i =1

3Y

j =1
i 6= j

f (� i )
� i � � j

[Rv � � j I ] ; (2.4)

where I is the 3 � 3 identity matrix. The polynomial � 3 �
�
p2 � 3q

�
�

�
� 2 � q� �

�
+ q3� 3

is the characteristic polynomial of Rv , and so, � 1 = � � 2, � 2 = � � �� , � 3 = � � 2 are the
eigenvalues of the matrixRv [11].

Theorem 2.4. Let Rh
v be any h-th positive integer power of the matrix given in (2.1),

and I is the 3 � 3 identity matrix. Then,

R2n
v =

� 2n� 2

p2

h
U2nV2n� 1R2

v + q� 2U2nU2n� 2Rv � q3� 2U2n� 2V2n� 1I
i

; (2.5)

R2n� 1
v =

� 2n� 3

p2

h
U2n� 2V2n� 1R2

v + q� V2n� 1V2n� 3Rv � q3� 2U2n� 2V2n� 3I
i

: (2.6)

Proof. By inserting the eigenvalues � 1 = � � 2, � 2 = � � q, � 3 = � � 2 into ( 2.4), we
consider it as two equations according to whetherh is even or odd, and rewrite the right
hand side of f (Rv) = Rh

v by grouping similar members with respect to matricesR2
v , Rv ,

and I ,

R2n
v = � 2n � 2

p2

2

4

�
� 4n � 1

p
�

+ q2n� 1 � � 4n � 1
p

�

�
R2

v + �
�
�� 4n� 1 �

�
p2 � 2q

�
q2n� 1

+ �� 4n� 1�
Rv � q� 2

�
� 2 � 4n � 1

p
�

� qn � � 2 � 4n � 1
p

�

�
I

3

5 ;

R2n� 1
v = � 2n � 3

p2

2

4

�
� 4n � 3

p
�

� q2n� 2 � � 4n � 3
p

�

�
R2

v + �
�
�� 4n� 3 +

�
p2 � 2q

�
q2n� 2

+ �� 4n� 3�
Rv � q� 2

�
� 2 � 4n � 3

p
�

+ q2n� 1 � � 2 � 4n � 3
p

�

�
I

3

5 :

We arrange these equations according to the Binet's formulas given in (1.3) and we get
the desired results;

R2n
v = � 2n � 2

p2

2

4
� 2n � � 2n

p
�

�
� 2n� 1 + � 2n� 1�

R2
v + q�

�
� 2n � � 2n �

�
� 2n� 2 � � 2n� 2�

Rv � q3� 2 � 2n � 2 � � 2n � 2
p

�

�
� 2n� 1 + � 2n� 1�

I

3

5 ;

R2n� 1
v = � 2n � 3

p2

2

4
� 2n � 2 � � 2n � 2

p
�

�
� 2n� 1 + � 2n� 1�

R2
v + q�

�
� 2n� 3 + � 2n� 3�

�
� 2n + � 2n �

Rv � q3� 2 � 2n � 2 � � 2n � 2
p

�

�
� 2n� 3 + � 2n� 3�

I

3

5 :

�

Remark 2.5. Equating all the entries of the closed form given in (2.2) with ( 2.5), and
(2.3) with ( 2.6) we obtain several identities of the numbersUn and Vn .
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Remark 2.6. The matrix equations such that Rn
v Rm

v = Rn+ m
v , Rn

v Rn+1
v = R2n+1

v , and
Rn

v R� m
v = Rn� m

v etc., give some identities of sums or di�erence of indices for their squares
or products of consecutive numbersUn and Vn . Since these identities and their proofs can
be carried out by means of analogous arguments considering by many mathematician, we
state only the essential details and omit the identities, and their proofs.

3. The closed form expressions of the matrix (Rv + q� I )n

Throughout Section 3, let I denote the 3 � 3 identity matrix and n be an arbitrary
positive integer. From the Cayley Hamilton theorem, R3

v �
�
p2 � 3q

�
�

�
R2

v � q� Rv
�

+
q3� 3I = 0 is valid, multiplying with Rn

v of this matrix equation yields

Rn+3
v + q3� 3Rn

v =
� V3

p

�
Rn+2

v + q� Rn+1
v

�
: (3.1)

Remark 3.1. Various identities can be obtained from the cases whethern is even integer
or not in ( 3.1). If n = 2k, k � 1, then

pV2
n+3 + q3p� U2

n = V3

�
� U2

n+2 + qV2
n+1

�
;

qpVn+2 Vn+3 + q3p� Un� 1Un = V3 (� Un+1 Un+2 + VnVn+1 ) ;

and, if n = 2k � 1, k � 1, then

p� U2
n+3 + q3pV2

n = V3

�
V 2

n+2 + q� U2
n+1

�
;

p� Un+2 Un+3 + q3pVn� 1Vn = V3 (Vn+1 Vn+2 + q� UnUn+1 ) :

Similar identities can also be given with matrix equation

Rn+3
v + q3� 3Rn

v =
� V3

p
Rn+1

v (Rv + q� I ) :

After a little algebraic manipulation on the expansion (Rv + q� I )3, we obtain a matrix
equation as

(Rv + q� I )3 = � p2Rv (Rv + q� I ) : (3.2)

Now, we give closed form expressions and some matrix equations on the matrix(Rv + q� I )n

to produce summation identities involving terms from the sequencesf Ung and f Vng.

Theorem 3.2. Let Rn
v be any n-th powers of the matrix given in (2.1), 0 6= p; q 2 C,

� = p2 � 4q, and X := [ Rv + q� I ] is a matrix X = [ x ij ]3� 3. Then,

X 2n+1 = � np2nRn
v (Rv + q� I ) ; (3.3)

X 2n+2 = p2n+2 � 2n+1

"

(� q)3� i

 
2

i � 1

!

V2n+ i + j � 2

#

3� 3

: (3.4)

Proof. By using the induction method on n and (Rv + q� I )3 = � p2Rv (Rv + q� I ) given
in (3.2), the relation ( 3.3) can be proved. After the equation given in (3.3) is valid, an
equation (Rv + q� I )2n+2 = � np2nRn

v (Rv + q� I )2 is established by multiplying the right
hand side of the equation (3.3) with (Rv + q� I ). Then, by using the matrix Rn

v in (2.2)
and (2.3), the proof is completed. �

Theorem 3.3. Let X := [ Rv + q� I ] be a matrix X = [ x ij ]3� 3 and 0 6= p; q 2 C, � =
p2 � 4q, then

X n = pn � n� 1

"

(� q)3� i

 
2

i � 1

!

Vn+ i + j � 4

#

3� 3

; i; j = 1 ; 2; 3: (3.5)
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Proof. By using the induction method on n with the following identities

pVn+2 � 4qVn+1 + pqVn = � Vn+1 ;

Vnp3 � 2Vn� 1p2q + Vn� 2pq2 � 3Vnpq+ 4Vn� 1q2 = � Vn+1 ;

the desired results can be proved. �

In [2], the authors establish several formulas for sums and alternating sums of products
of generalized Fibonacci and Lucas numbers. Especially, the authors extend, more easily,
some results of Z. ƒerin [5� 7, 9, 10]. By equating the entries r 2n+1

21 and r 2n+1
31 of matrices

given in (3.3), (3.4), and (3.5), we derive new �nite sums involving their squares or products
of terms from the generalized Fibonacci and Lucas sequencesf Ung and f Vng.

Theorem 3.4. If n = 2k, k � 1; then

kX

i =0

 
n
2i

!

q2i � U2
n� 2i +

kX

i =1

 
n

2i � 1

!

q2i � 1V 2
n� 2i +1 = pnVn ;

kX

i =0

 
n
2i

!

q2i � Un� 2i � 1Un� 2i +
kX

i =1

 
n

2i � 1

!

q2i � 1Vn� 2i Vn� 2i +1 = pnVn� 1;

and if n = 2k � 1, k � 1; then

kX

i =0

 
n
2i

!

q2i V 2
n� 2i +

kX

i =1

 
n

2i � 1

!

q2i � 1� U2
n� 2i +1 = pnVn ;

kX

i =0

 
n
2i

!

q2i Vn� 2i � 1Vn� 2i +
kX

i =1

 
n

2i � 1

!

q2i � 1� Un� 2i Un� 2i +1 = pnVn� 1:

Proof. Let X := [ Rv + q� I ] be a matrix X = [ x ij ]3� 3, by using the binomial formula for
the left hand side of the expression given in (3.5), we rewrite

X n =
nX

t=0

 
n
t

!

(q�) n� t Rt
v = pn � n� 1

"

(� q)3� i

 
2

i � 1

!

Vn+ i + j � 4

#

3� 3

; i; j = 1 ; 2; 3:

The desired results are obtained by equating the entries (2,1) and (3,1) of the appropriate
matrices given in (2.2) or (2.3) on the above results. �

By using the similar steps, we establish the following matrix equations.

Corollary 3.5. Let Rn
v be any n-th powers of matrix given in (2.1), and 0 6= p; q 2 C,

� = p2 � 4q 6= 0 . Then,

p2n � nRn
v [Rv + q� I ]n = [ Rv + q� I ]3n : (3.6)

Proof. By using the techniques given above and the well-known identitiesV2n� 1U2n+1 �
qV2n� 2U2n = V4n� 1, V2nU2n+1 � qV2n� 1U2n = V4n and V2n� 2V2n � qV2n� 1V2n� 3 = � U4n� 3,
the desired result is obtained. �

We also observe that the following identity is valid;
h
R3

v + q3� 3I
i n

=
� nV n

3

pn Rn
v [Rv + q� I ]n : (3.7)

Remark 3.6. Manipulating the equation given in (3.6) yields
h
R3

v + q3� 3I
i n

=
� nV n

3

pn Rn
v [Rv + q� I ]n =

V n
3

p3n [Rv + q� I ]3n (3.8)
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and, expanding (3.8) and (3.5) gives
nX

i =0

 
n
i

!

(q�) 3(n� i ) R3i
v =

� nV n
3

pn

nX

i =0

 
n
i

!

(q�) (n� i ) Rn+ i
v (3.9)

= � 3n� 1V n
3

0

@
q2V3n� 2 q2V3n� 1 q2V3n

� 2qV3n� 1 � 2qV3n � 2qV3n+1
V3n V3n+1 V3n+2

1

A : (3.10)

Many identities similar to the identities given below can be established by using the matrix
equation given in (3.10).

Theorem 3.7. The following identities are valid:
kX

i =0

" 
n
2i

!

qn� 2i � U2
n+2 i +

 
n

2i + 1

!

qn� 2i � 1V 2
n+2 i +1

#

= pnV3n ; n = 2k;

k� 1X

i =0

" 
n
2i

!

qn� 2i V 2
n+2 i +

 
n

2i + 1

!

qn� 2i � 1� U2
n+2 i +1

#

= pnV3n ; n = 2k � 1:

Proof. By equating the (3; 1) entry of the matrix given in ( 3.10) with the (3; 1) entry of
(3.9) which is obtained by the help of (2.2) if n is even (or (2.3) if n is odd), we obtain
the desired results. �

4. Conclusion

In this paper, two di�erent closed forms of the matrix functions f (Rv) = Rn
v are in-

troduced for the generalized Fibonacci and Lucas sequences. Several new identities are
obtained for the generalized Fibonacci and Lucas numbers from these closed forms. The
generalized Lucas matrix is also described by the matrix(Rv + q� I )n . From odd and
even cases ofn, many combinatorial identities are obtained.
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Abstract

In this paper, we present generalized Pólya-Szegö type inequalities for positive invertible
operators on a Hilbert space for arbitrary operator means between the arithmetic and
the harmonic means. As applications, we present operator Grüss, Diaz�Metcalf, and
Klamkin�McLenaghan inequalities.
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1. Introduction

Let � be a positive linear map onB (H ); the algebra of all bounded linear operators on
a Hilbert space H . Ando [1] proved the inequality

� ( A]B ) � � ( A) ] � ( B ) ; (1.1)

for any positive linear map � and positive operatorsA; B , where �] � is the geometric mean
in the sense of Kubo-Ando theory [11]. That is,

A]B = A
1
2

�
A � 1

2 BA � 1
2

� 1
2 A

1
2 :

Speaking of means, the arithmetic meanAr B and the harmonic meanA!B of two invert-
ible positive operators A; B 2 B(H ) are de�ned, respectively, by

Ar B =
A + B

2
and A!B =

 
A � 1 + B � 1

2

! � 1

:

It is well-known that A!B � A]B � Ar B . In fact, if � is a symmetric operator mean
(in the sense that A�B = B�A ), then A!B � A�B � Ar B; for the invertible positive
operators A; B 2 B(H ).

The operator Pólya-Szegö inequality presents a converse of Ando's inequality (1.1), as
follows.
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Email addresses: thdinh@troy.edu (T.H. Dinh), hrmoradi@mshdiau.ac.ir (H. Moradi),

sababheh@yahoo.com; sababheh@psut.edu.jo (M. Sababheh)
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Theorem 1.1. Let � be a positive linear map andA; B 2 B (H ) be such thatmI �
A; B � MI for some scalars0 < m < M (I stands for the identity operator). Then

� ( A) ] � ( B ) �
M + m

2
p

Mm
� ( A]B ) : (1.2)

The inequality ( 1.2) was �rst proved in [ 12, Theorem 4] under the sandwich condition
sA � B � tA (0 < s � t) for matrices (see also [3]).

Recall that a continuous real-valued function f de�ned on an interval J is said to be
operator monotone if A � B implies f (A) � f (B ) for all self-adjoint operators A; B with
spectra in J . Very recently, Dinh et al. [10, Theorem 2.12] proved the following converse
of (1.1) that extends (1.2).

Theorem 1.2. Let � be a positive linear map,f be an operator monotone function on
[0; 1 ), �; � operator means such that! � �; � � r , and 0 < m < M . Then for any positive
operators A; B satisfying mI � A; B � MI , the following inequality holds

f (� ( A)) � f (� ( B )) �
(M + m)2

4Mm
f (� ( A�B )) : (1.3)

The �rst target of this article is to present a generalized form of Pólya-Szegö inequality.
In particular, we present relations between

� ( f (A)) � � ( f (B )) and � ( f (A�B ))

under the sandwich conditionsA � B � tA; for the operator monotone function f and the
symmetric operator means�; � . Similar discussion will be presented for operator monotone
decreasing functions. See Theorem2.4 below for the exact statements. We refer the reader
to the recent references [6,8] treating similar topics.

2. Main results

In this section we present relations between

� ( f (A)) � � ( f (B )) and � ( f (A�B ))

as generalized forms of Pólya-Szegö inequality. Then we show some applications including
Grüss, Diaz�Metcalf, and Klamkin�McLenaghan type inequalities.

The �rst main result in this direction will be presented in Theorem 2.4 below. However,
we will need some lemmas �rst.

Lemma 2.1. Let A; B 2 B (H ) such that sA � B � tA for some scalars0 < s � t.
(a) If st � 1, then

2
p

s +
p

t
Ar B � A]B �

p
s +

p
t

2
A!B: (2.1)

(b) If st � 1, then

2
p

st
p

s +
p

t
Ar B � A]B �

p
s +

p
t

2
p

st
A!B: (2.2)

Proof. By appealing to functional calculus, it su�ces to show the corresponding scalar
inequalities. We de�ne f (x) := x+1

2
p

x where0 < s � x � t. It is straightforward to see that

f (x) �
1
2

max
� p

s +
1

p
s

;
p

t +
1

p
t

�
:

Consequently,

x + 1
2

�

8
<

:

p
s+

p
t

2

p
x if st � 1;

p
s+

p
t

2
p

st

p
x if st � 1;

(2.3)
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for 0 < s � x � t, and

1=x + 1
2

�

8
<

:

p
s+

p
t

2
1p
x if st � 1;

p
s+

p
t

2
p

st
1p
x if st � 1;

(2.4)

for 0 < 1
t � 1

x � 1
s . Now, if 0 < s � x � t, the inequalities (2.3) and (2.4) imply

2
p

s +
p

t

�
x + 1

2

�
�

p
x �

p
s +

p
t

2

�
1=x + 1

2

� � 1

wheneverst � 1, and

2
p

st
p

s +
p

t

�
x + 1

2

�
�

p
x �

p
s +

p
t

2
p

st

�
1=x + 1

2

� � 1

wheneverst � 1. This completes the proof of the lemma. �

Remark 2.2. The substitution of s = m
M and t = M

m in Lemma 2.1 implies the celebrated
result [5, Theorem 13]

2
p

Mm
M + m

Ar B � A]B �
M + m

2
p

Mm
A!B:

The next elementary lemma is given for completeness.

Lemma 2.3. Let � � 1.

(a) If f : [0; 1 ) ! [0; 1 ) is an operator monotone function, then

f (�t ) � �f (t) :

(b) If g : [0; 1 ) ! [0; 1 ) is an operator monotone decreasing function, then

g(�t ) �
1
�

g (t) :

Now we are ready to prove the �rst main result,.

Theorem 2.4. Let � be a positive linear map,�; � operator means such that! � �; � � r ,
and let A; B 2 B (H ) such that sA � B � tA for some scalars0 < s � t.

(i) If f is an operator monotone increasing function on[0; 1 ), then

� ( f (A)) � � ( f (B )) �

 p
s +

p
t

2

! 2

� ( f (A�B )) (2.5)

wheneverst � 1, and

� ( f (A)) � � ( f (B )) �

 p
s +

p
t

2
p

st

! 2

� ( f (A�B ))

wheneverst � 1.
(ii) If g is an operator monotone decreasing function on[0; 1 ), then

� ( g (A�B )) �

 p
s +

p
t

2

! 2

� ( g (A)) � � ( g (B )) (2.6)

wheneverst � 1, and

� ( g (A�B )) �

 p
s +

p
t

2
p

st

! 2

(� ( g (A)) � � ( g (B )))

wheneverst � 1.
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Proof. First assume that st � 1. We observe that

� ( f (A)) � � ( f (B )) � � ( f (A)) r � ( f (B )) (since � � r )

= � ( f (A) r f (B ))

� � ( f (Ar B )) (by [13, Corollary 1.12])

� �

 

f

  p
s +

p
t

2

!

A]B

!!

(by ( 2.1))

�
p

s +
p

t
2

� ( f (A]B )) (by Lemma 2.3 (a)) :

On the other hand,

� ( f (A]B )) � �

 

f

  p
s +

p
t

2

!

A!B

!!

(by RHS of (2.1))

�
p

s +
p

t
2

� ( f (A!B )) (by Lemma 2.3 (a))

�
p

s +
p

t
2

� ( f (A�B )) (since ! � � ):

(2.7)

These two inequalities together imply (2.5). This completes the proof of the case of oper-
ator monotone functions and st � 1:

Now assume thatg is operator monotone decreasing. We have

g(A) �g (B ) � g (Ar B ) (by [2, Theorem 2.1])

� g

  p
s +

p
t

2

!

A]B

!

(by of (2.1))

�
2

p
s +

p
t
g (A]B ) (by Lemma 2.3 (b)) :

(2.8)

On the other hand,

g (A]B ) � g

  p
s +

p
t

2

!

A!B

!

(by ( 2.1))

�
2

p
s +

p
t
g (A!B ) (by Lemma 2.3 (b))

�
2

p
s +

p
t
g (A�B ) (since ! � � ):

(2.9)

Combining (2.8) and (2.9) yields

g(A�B ) �

� p
s +

p
t
� 2

4
(g(A) �g (B )) :

Applying � , we obtain that

� ( g (A�B )) �

� p
s +

p
t
� 2

4
� ( g (A) �g (B ))

�

� p
s +

p
t
� 2

4
� ( g (A)) � � ( g (B )) (by [1, Theorem 3]):

This completes the proof for operator monotone decreasing functions in casest � 1:
The proof of the casest � 1 is similar to that st � 1; except instead of inequality (2.1)

we use the inequality (2.2). �
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As an application of Theorem 2.4, we have the following Grüss type inequalities.

Corollary 2.5. Let � be a positive linear map,�; � operator means such that! � �; � � r ,
and let A; B 2 B (H ) be such thatmI � A; B � MI for some scalars0 < m < M .

(i) If f is an operator monotone increasing function on[0; 1 ), then

� ( f (A)) � � ( f (B )) � � ( f (A�B )) �
(M � m)2

4Mm
f (M ) :

(ii) If g is an operator monotone decreasing function, then

� ( g (A�B )) � � ( g (A)) � � ( g (B )) �
(M � m)2

4Mm
g(m) :

Proof. It follows from Theorem 2.4 (i) that

� ( f (A)) � � ( f (B )) �
(M + m)2

4Mm
� ( f (A�B )) : (2.10)

Hence

� ( f (A)) � � ( f (B )) � � ( f (A�B )) �

 
(M + m)2

4Mm
� 1

!

� ( f (A�B ))

�

 
(M + m)2

4Mm
� 1

!

f (M ) ;

where in the �rst inequality we used (2.10) and the second inequality follows from the fact
that f (m) I � f (A�B ) � f (M ) I .

The other case can be obtained similarly by utilizing Theorem2.4 (ii). �

In [7, Theorem 3], the inequality

kg(A)]g(B )k
kA]B k

� 2S(h)2





g(A]B )
A]B




 (2.11)

was proved for the positive matricesA; B satisfying mI � A; B � MI , the operator convex
function g : [0; 1 ) ! [0; 1 ) satisfying g(0) = 0 and the Specht's ratio S(h): Following the
same ideas as in [7] one can prove the following more general form, which then implies a
re�nement of ( 2.11).

Corollary 2.6. Let A; B 2 B (H ) be such thatsA � B � tA for some scalars0 < s � t
with st � 1, and let g be an operator convex function withg(0) = 0 . Then for any � � ] ,
� � ] and for any unitarily invariant norm k�ku ,

jjg(A)�g (B )) jju

jjA�B jju
�

 p
s +

p
t

2

! 2 �
�
�
�

�
�
�
�
g(A]B )

A]B

�
�
�
�

�
�
�
�
u

; (2.12)

and
jjg(A)]g(B )) jju

jjA]B jju
�

 p
s +

p
t

2

! 2 �
�
�
�

�
�
�
�
g(A�B )

A�B

�
�
�
�

�
�
�
�
u

: (2.13)

In particular, if ! � �; � � r ,

jjg(A)�g (B )) jju

jjA�B jju
�

 p
s +

p
t

2

! 4 �
�
�
�

�
�
�
�
g(A�B )

A�B

�
�
�
�

�
�
�
�
u

:

Proof. By Theorem 2.4,

jjg(A)�g (B )) jju

jjA�B jju
�

 p
s +

p
t

2

! 2

jjg(A]B )jju :
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Consequently, the following double inequality is valid:

jjg(A)�g (B )) jju

jjA�B jju
�

 p
s +

p
t

2

! 2
jjg(A]B )) jju

jjA]B jju
�

 p
s +

p
t

2

! 2 




g(A]B )
A]B






u
:

The second inequality is obtained by similar arguments. �

The casest � 1 in Corollary 2.6 is also valid if we employ inequality (2.2) instead of
(2.1).

Remark 2.7. In the special cases whens = m
M , t = M

m , and � = ] (respectively � = ] ),
(2.12) (respectively (2.13)) reduces to

kg(A) ]g (B )ku

kA]B ku
� 2

�
M + m

2
p

Mm

� 2 




g(A]B )
A]B






u
: (2.14)

This shows that the inequality (2.14) is a re�nement of [7, Theorem 3]. To see that (2.14)
is a re�nement of [7, Theorem 3], one has to recall thatM + m

2 � S
�

M
m

� p
Mm (see [14]).

Remark 2.8. By choosing � as an identity map, s = m
M , t = M

m , and � = � = ] in (2.7)
and (2.8), we have the following two cases:

(i) If f is an operator monotone increasing function, then

f (A) ]f (B ) �
M + m

2
p

Mm
f (A]B ) : (2.15)

(ii) If g is an operator monotone decreasing function, then

g(A]B ) �
M + m

2
p

Mm
(g(A) ]g (B )) : (2.16)

As mentioned in [4, Theorem 6], if A; B 2 B (H ) are two positive operators such that
A � B and mI � A � MI for some scalars0 < m < M then,

A2 �
(M + m)2

4Mm
B 2:

Now, by the substitutions A ! f (A) ]f (B ) and B ! M + m
2
p

Mm
f (A]B ) in the above discus-

sion, we get

(f (A) ]f (B ))2 �

 
(M + m)2

4Mm

! 2

f (A]B )2:

A similar approach gives

g(A]B )2 �

 
(M + m)2

4Mm

! 2

(g (A) ]g (B ))2:

We conclude this article by showing operator Diaz�Metcalf and Klamkin�McLenaghan
inequalities.

Theorem 2.9. Let � be a positive linear map,�; � operator means such that! � �; � � r ,
and let A; B 2 B (H ) such that sA � B � tA for some scalars0 < s � t. If f is a non-
negative operator monotone function then,

(i) (Operator Diaz�Metcalf type inequality) If st � 1, then

�
�
f

� p
stA

��
� � ( f (B )) �

 p
s +

p
t

2

! 2

� ( f (A�B )) : (2.17)

On the other hand, if st � 1, then

�
�
f

� p
stA

��
� � ( f (B )) �

� p
s +

p
t
� 2

4
p

st
� ( f (A�B )) :
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(ii) (Operator Klamkin�McLenaghan type inequality) If st � 1, then

�( f (A�B )) � 1
2 � ( f (B )) �( f (A�B )) � 1

2 � �( f (A�B ))
1
2 �

�
f

� p
stA

�� � 1
�( f (A�B ))

1
2

�

� p
s +

p
t
� 2

2
� 2I �

 
�
�( f (A�B )) � 1

2 �
�
f

� p
stA

��
�( f (A�B )) � 1

2

� 1
2

�
�
�( f (A�B )) � 1

2 �
�
f

� p
stA

��
�( f (A�B )) � 1

2

� � 1
2

! 2

:

(2.18)
On the other hand, if st � 1, then

�( f (A�B )) � 1
2 � ( f (B )) �( f (A�B )) � 1

2 � �( f (A�B ))
1
2 �

�
f

� p
stA

�� � 1
�( f (A�B ))

1
2

�

� p
s +

p
t
� 2

2
p

st
� 2I �

 
�
�( f (A�B )) � 1

2 �
�
f

� p
stA

��
�( f (A�B )) � 1

2

� 1
2

�
�
�( f (A�B )) � 1

2 �
�
f

� p
stA

��
�( f (A�B )) � 1

2

� � 1
2

! 2

:

(2.19)

Proof. We assumest � 1. From the assumption sA � B � tA , it follows that
p

s �
�
A � 1

2 BA � 1
2

� 1
2 �

p
t. Therefore,

p
stA + B

2
�

 p
s +

p
t

2

!

A]B: (2.20)

Now, sincef is an operator monotone increasing we have

f
� p

stA
�

+ f (B )

2
� f

 p
stA + B

2

!

(by [13, Corollary 1.12])

� f

  p
s +

p
t

2

!

A]B

!

(by ( 2.20))

� f

0

@

 p
s +

p
t

2

! 2

A!B

1

A (by ( 2.1))

�

 p
s +

p
t

2

! 2

f (A!B ) (by Lemma 2.3(a))

�

 p
s +

p
t

2

! 2

f (A�B ) (since ! � � ):

It follows from the linearity of � and the fact � � r that

�
�
f

� p
stA

��
� � ( f (B )) �

�
�
f

� p
stA

��
+ � ( f (B ))

2

�

 p
s +

p
t

2

! 2

� ( f (A�B )) :

So we have (2.17). The casest � 1 can be obtained similarly.
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From (2.17) we easily obtain that

�
�
f

� p
stA

��
+ � ( f (B )) �

� p
s +

p
t
� 2

2
� ( f (A�B )) : (2.21)

The estimate (2.21) guarantees

�( f (A�B )) � 1
2 � ( f (B )) �( f (A�B )) � 1

2

�

� p
s +

p
t
� 2

2
� �( f (A�B )) � 1

2 �
�
f

� p
stA

��
�( f (A�B )) � 1

2 :

We set
X := �( f (A�B )) � 1

2 � ( f (B )) �( f (A�B )) � 1
2

� �( f (A�B ))
1
2 �

�
f

� p
stA

�� � 1
�( f (A�B ))

1
2

and observe

X �

� p
s +

p
t
� 2

2
� T � T � 1; (2.22)

where T = �( f (A�B )) � 1
2 �

�
f

� p
stA

��
�( f (A�B )) � 1

2 . Notice that

T + T � 1 =
�
T

1
2 � T � 1

2

� 2
+ 2 I: (2.23)

Combining (2.22) and (2.23) we get

X �

� p
s +

p
t
� 2

2
�

�
T

1
2 � T � 1

2

� 2
� 2I;

which is equivalent to the inequality (2.18). The inequality ( 2.19) is obtained by similar
arguments. �

Remark 2.10. Assume
p

st � 1. Due to the monotonicity property of operator means,
we have

� ( f (A)) � � ( f (B )) � �
�
f

� p
stA

��
� � ( f (B )) �

 p
s +

p
t

2

! 2

� ( f (A�B )) ;

which is stronger than (2.5).
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Abstract
In this work we study some properties of the normalized form of generalized Dini function
like close-to-convexity of some order and close-to-convex with respect to another convex
function. Furthermore, we investigate su�cient conditions which these functions are uni-
formly k-starlike functions of complex orderb in the open unit disk, and some consequences
of the main results are also presented.

Mathematics Subject Classi�cation (2010). 33E12, 30C45

Keywords. analytic functions, univalent function, Bessel functions of �rst kind of order
� , modi�ed Dini function, starlike, convex, and close-to-convex functions of order�

1. Introduction and preliminaries

Let A be the class of functions of the form

f (z) = z +
1X

n=2

anzn ; (1.1)

which are analytic in the open unit disk U := f z 2 C : jzj < 1g, and let S denote the class
of all functions of A which are univalent in U.

Furthermore, let P( ) denote the class of all analytic functions consisting of functions
p with p(0) = 1 such that

Rep(z) > ; z 2 U; (0 �  < 1);

and in particular, P := P(0) is the well-known Caratheódory class of functionswith positive
real part in U.

We denote by S� (� ) and C(� ) the subclasses ofA consisting of functions which are
starlike of order � , and convex of order� , that is

S� (� ) :=
�

f 2 A : Re
zf 0(z)
f (z)

> �; z 2 U
�

; (0 � � < 1)

and

C(� ) :=

(

f 2 A : Re
(zf 0(z))0

f 0(z)
> �; z 2 U

)

; (0 � � < 1)
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bulboaca@math.ubbcluj.ro (T. Bulboac )
Received: 11.04.2019; Accepted: 06.01.2020
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respectively. In particular, S� := S� (0) and C := C(0) are the class ofstarlike functions
and convex functionsin the unit disk U, respectively.

Also, we denote byK (� ) the subclass ofA consisting of functions which areclose-to-
convex of order� , that is

Re
zf 0(z)
g(z)

> �; z 2 U; (0 � � < 1)

for some functiong 2 S� . In particular, K := K (0) is the class ofclose-to-convex functions
in the unit disk U.

There has been a continuous interest shown on the geometric and other related prop-
erties as univalency, starlikeness, convexity, and uniformly convexity of various special
functions such as Bessel, Struve, Lommel, Wright, and Bessel functions. Several authors
obtained many applications in the geometric functions theory for these special functions,
see for example [1� 5,7,12,13].

Special functions, like Bessel functions of the �rst kind play an important role in pure
and applied mathematics. First, we will de�ne the generalized Bessel function of �rst kind
of order � by

J c
� (z) :=

1X

n=0

(� c)n (z=2)2n+ �

n!�( � + n + 1)
; z 2 U:

In the present paper we will use the following normalized form ofgeneralized Dini
function:

r c
� (z) := 2 � �( � + 1) z1� �

2

h
(1 � � )J c

� (
p

z) +
p

z (J c
� )0(

p
z)

i

= z +
1X

n=1

(� c)n (2n + 1)�( � + 1)
4nn!�( � + n + 1)

zn+1 ; z 2 U (c 2 C; � > � 1): (1.2)

By taking c = � k, where k > 0, we get the modi�ed Dini function which has the form

Rk
� (z) = z +

1X

n=1

kn (2n + 1)�( � + 1)
4nn!�( � + n + 1)

zn+1 ; z 2 U:

In 2018, Bansal et al. [1] investigated some certain geometric properties of the modi�ed
Dini function Rk

� like close-to-convexity, starlikeness, and strongly starlikeness in the open
unit disk. In this paper our aim is to study some properties of the normalized form of
generalized Dini function r c

� . For this work, the following lemmas and de�nition will be
used in our investigation.

In 2018, Bukhari et al. [6] introduced the class UM (g; ; b; k), which was de�ned as
follows:

De�nition 1.1. Let f 2 A be given by (1.1). Then, f 2 UM (g; ; b; k) if for the function

g 2 A given by g(z) = z +
1P

n=2
bnzn with bn � 0 for n � 2, we have

Re

(

1 +
1
b

� zF 0
 (z)

F (z)
� 1

� )

> k

�
�
�
�
�
1
b

 
zF 0

 (z)

F (z)
� 1

! �
�
�
�
�
; z 2 U;

where

F (z) := (1 �  )( f � g)(z)(z) + z (f � g)0(z) = z +
1X

n=2

an dn ( ) zn ; z 2 U;

dn ( ) := [1 + n(1 �  )]bn ; (k � 0; 0 �  � 1; b 2 C n f 0g) ;

and � � � represents the Hadamard (or convolution) product.
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Generally, this class consists of functionsF which are uniformly k-starlike functions
of complex orderb in U. For special choices of parameters of the classUM (g; ; b; k) like

g(z) =
z

1 � z
we obtain the subclassUM

�
z

1� z ; ; b; k
�

=: UM (; b; k ).

The following lemmas will be used in the proofs of our main results.

Lemma 1.2. [6, Theorem 3.4] If f 2 A be given by(1.1),

g(z) = z +
1X

n=2

bnzn 2 A;

for some bk � 0; and
1X

n=2

[(k + 1)( n � 1) + jbj ] [1 +  (n � 1)] bn jan j < jbj;

for some k � 0, 0 �  � 1, b 2 C n f 0g, then f 2 UM (g; ; b; k).

Lemma 1.3. [16, Corollary 2] Let  2 [0; 1). If f 2 A satis�es the inequality

jzf 00(z)j <
1 � 

4
; z 2 U;

then

Ref 0(z) >
1 + 

2
; z 2 U:

Letting q ! 1� in Theorem 2.6 from [17] we obtain the next lemma.

Lemma 1.4. Let f (z) = z +
1P

n=1
b2n+1 z2n+1 , z 2 U, be an odd function. If

1 � 3b3 � : : : � (2n + 1) b2n+1 � : : : � 0;

or
1 � 3b3 � : : : � (2n + 1) b2n+1 � : : : � 2;

then the function f is close-to-convex (univalent) with respect to the convex function
1
2

log
1 + z
1 � z

.

2. New properties of the generalized Dini function

Theorem 2.1. If  2 [0; 1) and � >
jcj(5 � 2 )
4(1 �  )

� 1, then
r c

� (z)
z

2 P( ).

Proof. Let de�ne the function p by

p(z) =

r c
� (z)
z

� 

1 � 
; z 2 U:

Sincer c
� is given by (1.2), then p is analytic in U, with p(0) = 1 . To prove our result it is

su�cient to show that jp(z) � 1j < 1, z 2 U. By using the equality

�( � + 1)
�( � + n + 1)

=
1

(� + 1)( � + 2) : : : (� + n)
=:

1
(� + 1) n

; n 2 N; (2.1)

the inequalities

4n �
4
3

(2n + 1) ; (� + 1) n � (� + 1) n ; n! � 2n� 1; n 2 N;
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and the well-known triangle inequality, we deduce that

jp(z) � 1j =

�
�
�
�
�

1
1 � 

1X

n=1

(� c)n (2n + 1)�( � + 1)
4nn!�( � + n + 1)

zn

�
�
�
�
�

�
1

1 � 

1X

n=1

jcjn (2n + 1)�( � + 1)
4nn!�( � + n + 1)

jzjn �
3

4(1 �  )

1X

n=1

jcjn �( � + 1)
2n� 1�( � + n + 1)

=
3

2(1 �  )

1X

n=1

jcjn

2n (� + 1) n
�

3
2(1 �  )

1X

n=1

�
jcj

2(� + 1)

� n

; z 2 U:

Using the fact that the assumption � >
jcj(5 � 2 )
4(1 �  )

� 1 implies
jcj

2(� + 1)
< 1, from the

above inequality it follows that

jp(z) � 1j �
3

2(1 �  )

1X

n=1

�
jcj

2(� + 1)

� n

=
1

1 � 
3jcj

4(� + 1) � 2jcj
:= �; z 2 U:

Under our hypothesis, it is easy to check that� < 1, and therefore
r c

� (z)
z

2 P( ). �

For  = 0 the Theorem2.1reduces to the following result which gives su�cient condition

for the function
r c

� (z)
z

to be in the classP.

Corollary 2.2. If � >
5jcj
4

� 1, then
r c

� (z)
z

2 P.

Example 2.3. Since

J 1
1
2
(z) =

r
2

�z
sinz;

from Corollary 2.2 it follows that the function

r 1
1
2
(z)

z
= cos

p
z

is in the classP, and thus

Re
�
cos

p
z

�
> 0; z 2 U:

Theorem 2.4. If  2 [0; 1) and � >
jcj (7 �  + 2

p
12� 3 )

2(1 �  )
� 1, then r c

� 2 K
�

1+ 
2

�
.

Proof. Using the relation (2.1), the inequalities

4n �
2
3

(n + 1)(2 n + 1) ; (� + 1) n � (� + 1) n ; n! � 2n� 1; n 2 N;

and the triangle inequality, we have

�
�z(r c

� )00(z)
�
� =

�
�
�
�
�

1X

n=1

(� c)nn(n + 1)(2 n + 1)�( � + 1)
4nn!�( � + n + 1)

zn

�
�
�
�
�

�
1X

n=1

jcjnn(n + 1)(2 n + 1)�( � + 1)
4nn!�( � + n + 1)

jzjn �
3
2

1X

n=1

jcjnn�( � + 1)
2n� 1�( � + n + 1)

=
3
2

1X

n=1

njcjn

2n� 1(� + 1) n
�

3
2

1X

n=1

njcjn

2n� 1(� + 1) n =
3
2

jcj
� + 1

1X

n=1

n
�

jcj
2(� + 1)

� n� 1

; z 2 U:



New properties of the generalized Dini function 1757

From the assumption � >
jcj (7 �  + 2

p
12� 3 )

2(1 �  )
� 1 it follows that

jcj
2(� + 1)

< 1, and

from the above inequality we deduce

�
�z(r c

� )00(z)
�
� �

3
2

jcj
� + 1

1X

n=1

n
�

jcj
2(� + 1)

� n� 1

=
3
2

jcj
� + 1

4(� + 1) 2

[2(� + 1) � j cj]2
=

6jcj(� + 1)
[2(� + 1) � j cj]2

:= �; z 2 U:

It is easy to check that our assumption implies that � <
1 � 

4
thus, from the previous

inequality we obtain that
�
�z(r c

� )00(z)
�
� <

1 � 
4

; z 2 U:

Now, by using Lemma1.3 we conclude that

Re(r c
� )0(z) >

1 + 
2

; z 2 U;

and therefore r c
� 2 K

�
1+ 

2

�
. �

For the special case = 0 the Theorem 2.4 leads to the following result which gives
su�cient condition for the function r c

� to be of close-to-convex of order12 .

Corollary 2.5. If � >
jcj(7 + 4

p
3)

2
� 1, then r c

� 2 K
�

1
2

�
.

The following result gives us a su�cient conditions for the function r c
� to be in the class

UM (; b; k ) := UM
�

z
1� z ; ; b; k

�
.

Theorem 2.6. If

 (k+1)( r c
� )00(1)+[ k + 1 +  (jbj � (k + 1))] ( r c

� )0(1)+( jbj� (k+1))(1 �  )r c
� (1) < 2jbj; (2.2)

then the function r c
� 2 UM (; b; k ).

Proof. To prove our result, sincer c
� (z) = z+

1P

n=2
anzn with an =

(� c)n� 1(2n � 1)�( � + 1)
4n� 1(n � 1)!�( � + n)

,

according to Lemma1.2 it is su�cient to show that
1X

n=2

[(k + 1)( n � 1) + jbj ] [1 +  (n � 1)] jan j < jbj: (2.3)

Using the assumption (2.2) it is easy to prove that

1X

n=2

[(k + 1)( n � 1) + jbj] [1 +  (n � 1)] jan j =
1X

n=2

n [k + 1 +  (jbj � (k + 1))] jan j

+
1X

n=2

n(n � 1) (k + 1) jan j +
1X

n=2

(jbj � (k + 1))(1 �  )jan j

= [ k + 1 +  (jbj � (k + 1))]
�
(r c

� )0(1) � 1
�

+  (k + 1)( r c
� )00(1)

+ ( jbj � (k + 1))(1 �  ) ( r c
� (1) � 1) =  (k + 1)( r c

� )00(1)

+ [ k + 1 +  (jbj � (k + 1))] ( r c
� )0(1) + ( jbj � (k + 1))(1 �  )( r c

� )(1) � j bj < jbj;

hence (2.3) holds, and consequentlyr c
� 2 UM (; b; k ). �
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Remark 2.7. We will emphasize a few special cases of the above theorem obtained for
di�erent choices of the parametersb, k, and  .

(i) Letting b = k = 1 and  = 0 in Theorem 2.6 we get: if

2(r c
� )0(1) � r c

� (1) < 2;

then the function r c
� belongs to the classUM (0; 1; 1) of uniformly starlike functions de�ned

and investigated by Goodman [8,9].
(ii) For b = k = 1 and  = 1 , Theorem 2.6 yields to the next result: if

2(r c
� )00(1) + ( r c

� )0(1) < 2;

then the function r c
� belongs to the classUM (1; 1; 1) of uniformly convex functions de�ned

and studied by Goodman [8,9].
(iii) By taking b = 1 � � and  = 0 in Theorem 2.6 we obtain: if

(k + 1)( r c
� )0(1) � (� + k)r c

� (1) < 2(1 � � );

then the function r c
� belongs to the classUM (0; 1 � �; k ) of k-uniformly starlike functions

of order � introduced and investigated by Rønning [14,15].
(iv) Letting b = 1 � � and  = 1 in Theorem 2.6 we have: if

(k + 1)( r c
� )00(1) + (1 � � )( r c

� )0(1) < 2(1 � � );

then the function r c
� belongs to the classUM (1; 1 � �; k ) of k-uniformly convex functions

of order � introduced and studied by Rönning [14,15].
(v) Taking b = 1 and  = 0 in Theorem 2.6 we obtain: if

(k + 1)( r c
� )0(1) � kr c

� (1) < 2;

then the function r c
� belongs to the classUM (0; 1; k) of k-uniformly starlike functions

investigated by Kanas and Wi±niowska [11].
(vi) Letting b = 1 and  = 1 in Theorem 2.6 we obtain: if

(k + 1)( r c
� )00(1) + ( r c

� )0(1) < 2;

then the function r c
� is in the classUM (1; 1; k) of k-uniformly convex functions studied by

Kanas and Wi±niowska [10].

Theorem 2.8. If � �
9k
4

� 1, then the odd function
Rk

� (z2)
z

is close-to-convex with respect

to the convex function
1
2

log
1 + z
1 � z

.

Proof. Since
Rk

� (z2)
z

=
1P

n=1
d2n� 1z2n� 1, where

d2n� 1 =
kn� 1(2n � 1)�( � + 1)
4n� 1(n � 1)!�( � + n)

;

then d2n� 1 > 0 for all n � 1. In view of Lemma 1.4, to prove our result it is su�cient to
show that f (2n � 1)d2n� 1gn� 1 is a non-increasing sequence.

First, for n = 2 , the assumption � �
9k
4

� 1 implies that

3d3 =
9k

4(� + 1)
� 1:



New properties of the generalized Dini function 1759

If n � 2, a simple computation shows that

(2n � 1)d2n� 1 � (2n + 1) d2n+1 =
kn� 1�( � + 1)

4n� 1(n � 1)!�( � + n)

"

(2n � 1)2 �
k(2n + 1) 2

4n(� + n)

#

=
kn� 1�( � + 1)
4nn!�( � + n)

h
4n(2n � 1)2(� + n) � k(2n + 1) 2

i
=

kn� 1�( � + 1)
4nn!�( � + n)

' (n);

where
' (n) := 4 n(2n � 1)2(� + n) � k(2n + 1) 2:

Thus, it is su�cient to prove ' (n) � 0 for all n � 2. Using the inequality

4n(2n � 1)2 � (2n + 1) 2; n � 2;

we have

' (n) = 4 n(2n � 1)2(� + n) � k(2n + 1) 2 � 4n(2n � 1)2(� + 2) � k(2n + 1) 2

� (2n + 1) 2(� + 2) � k(2n + 1) 2 = (2 n + 1) 2(� + 2 � k) � (2n + 1) 2
�

5k
4

+ 1
�

> 0;

whenever� �
9k
4

� 1.

Therefore, f (2n � 1)c2n� 1gn� 1 is a non-increasing sequence and from Lemma1.4 our
result follows. �

Remark 2.9. Similar results to Theorems 2.1 and 2.8 can be found for the generalized
Dini functions d�;a;b;c in Theorem 6 (iv) and Theorem 18 in [7].
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Abstract
This article is about a discrete-time predator-prey model obtained by the forward Euler
method. The stability of the �xed point of the model and the existence conditions of the
Neimark-Sacker bifurcation are investigated. In addition, the direction of the Neimark-
Sacker bifurcation is given. Moreover, OGY control method is to implement to control
chaos caused by the Neimark-Sacker bifurcation. Finally, Neimark-Sacker bifurcation,
chaos control strategy, and asymptotic stability of the only positive �xed point are veri�ed
with the help of numerical simulations. The existence of chaotic behavior in the model is
con�rmed by computing of the maximum Lyapunov exponents.
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1. Introduction

The dynamics relationship in population models attract great attention in both biol-
ogy and mathematical biology. There are two types of the mathematical models in the
theory of population dynamic models: the continuous-time models governed by di�er-
ential equations, and the discrete-time models described by di�erence equations. There
are many research papers which are related to continuous time population models and
discrete-time populations models [2, 16, 26, 37]. Discrete-time models are very important
in application and these models are related to applied sciences such as ecology, biology,
physics, engineering, etc. [4,12� 14,24,34,36]. Zhang and Zou emphasized the importance
of the di�erence equations in their studies [37]. "In natural, some predatory or parasitoid
insects and their preys are univoltine and have no overlapping generations. The growth of
those species displays discrete systems and can be described by di�erence equations. Even
if some species have a long life and overlapping generations, when population quantities
are relatively small, discrete models are appropriate to depict these populations. Addi-
tionally, people usually study population change year by year (month by month, or day by
day) [37]". In 1976, the possible rich dynamic behaviors in a simple discrete-time models
were clearly shown by May [30]. Moreover, Jing et al. [18], Liu et al. [27], and Liu
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Email addresses: �gen.kangalgil@deu.edu.tr (F. Kangalgil), skaracan@cumhuriyet.edu.tr (S. Isik)
Received: 22.02.2019; Accepted: 06.01.2020
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and Dongmei [28] remarked that discrete time models can exhibit more complex dynamic
behavior than continuous time models. We need to investigate discrete-time population
models to compare between the continuous time population models and discrete-time pop-
ulation models. The discretization of continuous models is an important way to obtain
discrete models. Recently, many scholars have paid attention to the discrete-time popu-
lation models by using the forward Euler method. Cheng et al. [3] investigated stability
and bifurcation analysis of discrete-time prey-predator model with Allee e�ect. Atabaigi
[1] studied the stability of �xed points and analyzed bifurcation phenomena of discrete
predator-prey model with group defense by using the forward Euler method. He et al.
[15] investigated the dynamics of a discrete-time predator-prey model of Holling-III type.
Studies of the discrete-time population models which were obtained by Euler method can
be seen in [10,11,17,19� 22,27,33,38].

Chaos theory investigates dynamic models, and complicated and nonlinear structures.
This theory has several areas of application in di�erent disciplines such as engineering,
sociology, medicine, and economics. Especially biological models, due to their complex
structure, are one of the most widely used applications of chaos theory. A chaotic model
is a nonlinear deterministic model which represents complex and unpredictable behaviors.
The chaos control problems deal with the attempt to stabilize a chaotic model to either
a periodic orbit or an equilibrium. On the other hand, the Lyapunov exponent quanti�es
the sensitivity of the initial conditions of a dynamic system and its value is positive for
the chaotic system. So it plays an important role in the chaotic systems [5� 9].

A predator-prey model which is called Leslie-Gower predator prey model has been
suggested in [25]. In this model the predator growth function is di�erent from the predator
predation function. The authors supposed that the predator growth function is de�ned by
a function of the ratio of predators and their prey. A general form of the presented model
with the semi-ratio dependent functional response is as follows [32]:

dN (t)
dt

= N (t) g(:) � P (t) h(:);
dP (t)

dt
= P (t) ( r2 � �

P (t)
N (t)

);
(1.1)

whereN (t) and P (t) represent population densities of prey and predator at timet, respec-
tively. The function g(:) is the per capita growth rate of the prey in the lack of predator,
h(:) is the so-called predator functional response to prey,r2 is the intrinsic growth rates
of predator, and � is a measure of the food quality that the prey ensures for conversion
into predator birth. The Leslie-Gower term is the expression � P (t)

N (t ) . This term measures

the loss in the predator population on account of rareness (per capitaP (t)
N (t ) ) of its favorite

food N (t) : The functions g(:) and h(:) supply the classic properties. In the literature,
the per capita growth rate of the prey in the lack of predator g(:) may be constant or
a function dependent on N (t) such as g1(N ) := r1

�
1 � N (t)

K

�
: A predator functional

response to prey can be prey dependent i.e.h(:) = h(N (t)) or predator dependent i.e.
h(:) = h(N (t) ; P (t)) . Moreover, predator functional response functions have di�erent
types; for example, Holling Type-I functional response, ratio-dependent type are used in
mathematical modelling.

In recent times, a few articles in literature discussed the dynamics of predator-prey
model with Leslie type. Zhou et al. [39] studied the following model:

dN (t)
dt

= r1N (t) � "P (t) N (t) ;
dP (t)

dt
= P (t) ( r2 � �

P (t)
N (t)

);
(1.2)
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where the constantsr1; r2; " , and � are larger than zero. Zhou et al. �rst considered the
stability conditions of the �xed point for the model and then by introducing so called
Allee e�ect in di�erent forms, they researched the impact of this e�ect on the dynamics
of this predator-prey model [39]. In [2], Celik incorporated the term of delay � into the
model (1.2), where � � 0 denotes the delay time for the predator density. In this modi�ed
model, predator density is logistic with time delay and the carrying capacity proportional
to prey density. In [29], Lv et al. considered a ratio-dependent predator-prey model with
multiple delays where the dynamics are logistic with the carrying capacity proportional
to prey population. They investigated the stability of the positive �xed point and the
presence of Hopf bifurcation.

In [15], applying the forward Euler scheme to considered model, the authors investigated
the model (1.2) with the following functions g(:) = g1(N ) and h(:) = �N (t) =

�
N 2 (t) + � 2�

:
Here the predator consumes the prey according to the Holling type-III functional response.
In [33], the authors considered the model (1.1) with the following functions g(:) = g1(N )
and h(:) = �N (t) =(N 2 (t)+ b) which denotes the functional response of simpli�ed Holling
type-IV : They showed that the model undergoes Flip and Neimark-Sacker bifurcation.
Similarly, [ 1] studied a discrete-time predator-prey system of Leslie type with generalized
Holling type-III functional response �N 2 (t) =(aN 2 (t) + bN (t) + 1) :

Motivated by the above mentioned studies, the aim of this paper is to compare the
continuous time model with the discrete time model and observe some dynamical behaviors
that the continuous time model does not have. Applying the forward Euler method to
continuous predator-prey model (1.2), discrete-time version of model (1.2) is obtained as

N t+1 = N t + �N t (r1 � "P t ) ;

Pt+1 = Pt + �P t (r2 � �
Pt

N t
);

(1.3)

where� > 0 is the step size. Sucu [35] has studied the Flip bifurcation analysis of the model
(1.3) at the �xed point. In this study, we investigate the stability and the Neimark-Sacker
bifurcation analysis of the model (1.3) in R2

+ and apply OGY control method for chaos
control. The rest of this article is organized as follows: In Section 2, the local stability of
the �xed point of the model ( 1.3) is discussed. In Section 3, choosing� as the bifurcation
parameter, Neimark-Sacker bifurcation analysis is studied. It is shown that the model (1.3)
undergoes Neimark-Sacker bifurcation by using the bifurcation theory [23,33]. In Section
4, OGY control strategy is applied for chaos control due to occurrence of Neimark-Sacker
bifurcation. Finally in Section 5, all the obtained theoretical conclusions are supported by
some numerical simulations.

2. Stability analysis and �xed points of the system

In this section, we will determine the �xed point of the discrete-time system and examine
the stability conditions of this point. To �nd the �xed point of the system ( 1.3), we assume
that

N t = N t+1 = N � ; Pt = Pt+1 = P � ; (2.1)

in the system (1.3)

N � = N � + �N � (r1 � "P � ) ; (2.2)

P � = P � + �P �
�

r2 � �
P �

N �

�
:
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A simple calculation shows that the system (1.3) has one coexistence �xed pointE � =�
r 1 �
r 2" ; r 1

"

�
: The Jacobian matrix of the system (1.3) is

J =

0

@
1 + �r 1 � "P � � "�N

��P 2

N 2 1 + �r 2 � 2
��P
N

1

A : (2.3)

It is well-known that the stability of the �xed point is determined by the eigenvalues of
the matrix J: The characteristic equation of the matrix J is

� 2 � trJ� + det J = 0 ;

where trJ = 2 + �
�
r1 + r2 � P(" + 2�

N )
�

and

det J = 1 + � (r1 + r2 � "P �
2�P
N

) + � 2[r2(r1 � "P r 2) +
�P
N

(3"P � 2r1)]:

De�nition 2.1. A �xed point (x; y) is called
i) sink if j� 1j < 1 and j� 2j < 1; and it is locally asymptotically stable,
ii) source if j� 1j > 1 and j� 2j > 1; and it is locally unstable,
iii) saddle if j� 1j > 1 and j� 2j < 1 or j� 1j < 1 and j� 2j > 1;
iv) non-hyperbolic if either j� 1j = 1 or j� 2j = 1 :

Lemma 2.2. [15, 17, 22, 34] Assume F (� ) = � 2 + B� + C; where B and C are two real
constants and let F (1) > 0: Suppose� 1and � 2 are two roots of F (� ) = 0 : Then, the
following statements hold:

i) j� 1j < 1 and j� 2j < 1 if and only if F (� 1) > 0 and C < 1;
ii) j� 1j > 1 and j� 2j > 1 if and only if F (� 1) > 0 and C > 1;
iii) j� 1j > 1 and j� 2j < 1 if and only if F (� 1) < 0;
iv) � 1 and � 2 are a pair of conjugate complex roots andj� 1j = j� 2j = 1 if and only if

B 2 � 4C < 0 and C = 1 :

The Jacobian matrix of the system (2) evaluated at the coexistence �xed point E � =�
r 1 �
r 2" ; r 1

"

�
is given by

J (E � ) =

0

B
B
@

1 �
��r 1

r2
�r 2

2

�
1 � �r 2

1

C
C
A : (2.4)

The Jacobian matrix of the system (2) evaluated at the coexistence �xed point E � =�
r 1 �
r 2" ; r 1

"

�
is given by

J (E � ) =

0

B
B
@

1 �
��r 1

r2
�r 2

2

�
1 � �r 2

1

C
C
A : (2.5)

The characteristic equation of the matrix J (E � ) can be written as follows:

F (� ) = � 2 � (2 � �r 2)� + 1 � �r 2 + � 2r1r2: (2.6)

From Lemma 2.2, we have

F (1) = � 2r1r2: (2.7)
Since� > 0; r1 > 0, and r2 > 0; then F (1) > 0: Moreover

F (� 1) = � 2r1r2 � 2�r 2 + 4 : (2.8)
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Let us take � (� ) = � 2r1r2 � 2�r 2 + 4 . The discriminant of the function � (� ) is � =
4(r 2

2 � 4r1r2).

If r2 > 4r1 (case� > 0), the function � (� ) has real two roots:

� 1 =
r 2 �

p
r 2

2 � 4r 1 r 2

r1r2
; � 2 =

r 2+
p

r 2
2 � 4r 1 r 2

r1r2
: (2.9)

It is easily seen that sincer2 > 4r1; we have� 2 > � 1 > 0: If 0 < � < � 1 and � > � 2, then

F (� 1) > 0.

If r2 = 4 r1 (� > 0); the function � (� ) has real roots �
0

1 = �
0

2 = 1
r 1

. Then for any
� 2 (�1 ; 1

r 1
) [ ( 1

r 1
; 1 ), we haveF (� 1) > 0.

If r2 < 4r1 (� < 0); since the function � (� ) does not have real roots,F (� 1) > 0 for
any � > 0. It is clear that if 0 < � < 1

r 1
, then C < 1: Also if � > 1

r 1
, then C > 1.

If r2 > 4r1 and � 1 < � < � 2; then F (� 1) < 0:
In the light of this information we can give the following proposition.

Proposition 2.3. Assume that E � be a positive �xed point of the system(1:3). E � is

i) sink �xed point if one of the following conditions holds:

a) r2 > 4r1 and 0 < � <
r2 �

q
r 2

2 � 4r1r2

r1r2

b) r2 < 4r1 and 0 < � <
1
r1

.

ii) source �xed point if one of the following conditions holds:

a) r2 > 4r1 and � >
r2 +

q
r 2

2 � 4r1r2

r1r2

b) r2 < 4r1 and � >
1
r1

.

iii) saddle �xed point if the following conditions hold:

r2 > 4r1 and
r2 �

q
r 2

2 � 4r1r2

r1r2
< � <

r2 +
q

r 2
2 � 4r1r2

r1r2
:

3. Bifurcation analysis

3.1. Neimark-Sacker bifurcation at the �xed point E �

In this section, we select the parameter� as a bifurcation parameter to investigate the
Neimark-Sacker bifurcation by using the bifurcation theory and express the conditions
which Neimark-Sacker bifurcation will occur in the model (1.3). Also, we evaluate the
direction of the Neimark-Sacker bifurcation.
From Lemma 2.2 (iv), we can write NSBE � as follows:

NSBE � =
�

r1; r2; �; �; " 2 R+ : � =
1
r1

; r2 <
4
�

�
: (3.1)

If the parameters lie in NSBE � , the eigenvalues ofJ (E � ) are a pair of complex conjugate
with modulus one. This means that there exist a Neimark-Sacker bifurcation at the �xed
point E � : The eigenvalues are given by

�; � =
(2 � �r 2) � i

p
�r 2 (4 � �r 2)

2
: (3.2)
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Let

� =
1
r1

: (3.3)

Obviously, we have

j� j =
�
�
� �

�
�
� = 1 : (3.4)

Because of� 2 NSBE � ; we get

d j� (� )j
d�

�
�
�
�
� = 1

r 1

= r2 6= 0 : (3.5)

Moreover, if

trJ (E � ) = �r 2 � 2 6= 0 ; � 1 namely r1 6= r2;
r2

2
; (3.6)

then
� k (� ) 6= 1 for k = 1 ; 2; 3; 4; (3.7)

is satis�ed.
Assume that q; p 2 C2 are two eigenvectors ofJ

�
� NSB E �

�
and transposed matrix

J T �
� NSB E �

�
corresponding to � and �; respectively. We have

q �
�

�
2�r 2

2

�
�r 2 + i

q
�r 2 (4 � �r 2)

�
; 1

� T

; (3.8)

and

p �
�

�
r2

2�

�
�r 2 � i

q
�r 2 (4 � �r 2)

�
; 1

� T

: (3.9)

The normalized eigenvectors are

q =
�

�
2�r 2

2

�
�r 2 + i

p
�r 2 (4 � �r 2)

�
; 1

� T

;

p =

 
r 3

2� 2 � 4r 2
2�

2� (4 � �r 2)
�

i
p

�r 2 (4 � �r 2)
� (4 � �r 2)

�
�r 2

2 � 2r2
�

;
1

2 (4 � �r 2)
(3 + i

p
�r 2 (4 � �r 2))

! T

:

(3.10)
Using the transformation

x t = N t �
r1�
r2"

; yt = Pt �
r1

"
; (3.11)

the �xed point E � is shifted to the point (0; 0) : Using a second order Taylor expansion for
the second equation valid forjx t j < r 1 �

r 2" and jyt j < r 1
" ; system (2) has the form (3.12):

8
>><

>>:

x t+1 = x t �
��r 1

r2
yt + F1 (x t ; yt ) ;

yt+1 =
�r 2

2

�
x t + (1 � �r 2) yt + F2 (x t ; yt ) ;

(3.12)

or

�
x t
yt

�
! J (E � )

�
x t
yt

�
+

�
F1 (x t ; yt )
F2 (x t ; yt )

�
; (3.13)

where F1 (x t ; yt ) = � "�x t yt and F2 (x t ; yt ) = �"r 2
2

r 1 � x t yt � �"r 2
r 1

y2
t :

The system (3.13) can be expressed as
�

xn+1
yn+1

�
= J (E � )

�
xn
yn

�
+

1
2

B (xn ; xn ) +
1
6

C (xn ; xn ; xn ) + O
�
x4

n

�
; (3.14)



Controlling chaos and Neimark-Sacker bifurcation 1767

where the multilinear vector functions of x; y; u 2 R2;

B (x; y) =
�

B1 (x; y)
B2 (x; y)

�

and

C (x; y; u) =
�

C1 (x; y; u)
C2 (x; y; u)

�

are de�ned by

B1 (x; y) =
2P

j;k =1

@2F1
@�j @�k

�
�
�
� =0

x j yk

= � "� (x1y2 + x2y1);

B2 (x; y) =
2P

j;k =1

@2F2
@�j @�k

�
�
�
� =0

x j yk

=
�"r 2

2

r1�
(x1y2 + x2y1) �

2�"r 2

r1
x2y2;

C1 (x; y; u) =
2P

j;k;l =1

@3F1
@�j @�k @�l

�
�
�
� =0

x j ykul

= 0 ;

C2 (x; y; u) =
2P

j;k;l =1

@3F2
@�j @�k @�l

�
�
�
� =0

x j ykul

= 0 :

(3.15)

When � is close to� NS and z 2 C, the vector x 2 R2 can be decomposed uniquely as

X = zq+ zq:

It is clear that z = < p; X > :
The system (3.13) can be transformed for all su�ciently small j� j into the form

z ! � (� ) z + g(z; z; � ) ; (3.16)

where � (� ) = (1 + ' (� )) ei arctan( � ) with ' (� NS ) = 0 and g(z; z; � ) is smooth complex-
valued function. After Taylor expansion of g with respect to (z; z) ; we obtain

g(z; z; � ) =
X

k+ l � 2

1
k!l !

gkl (� ) zkzl ; (3.17)

where
g20 (� NS ) = < p; B (q; q) >

= �
"

r 2
1n

�
(r1 � r2) n + i

p
r2n (r2 + 5 r1)

�
;

g11 (� NS ) = < p; B (q;q) >

=
"r 2

r1
p

n
i;

g02 (� NS ) = < p; B (q;q) >

=
"

r 2
1n

�
(r1 � r2) n � i

p
r2n (3r1 � r2)

�
;

g21 (� NS ) = < p; C (q; q;q) >
= 0 :

(3.18)

At the above equations, we denoten = 4 r1 � r2:
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The direction of the Neimark-Sacker bifurcation is obtained by sign(a (� NS )) : The co-
e�cient a (� NS ) is calculated by

a (� NS ) = Re

 
e� i arctan( � NS )

2
g21

!

� Re

0

@

�
1 � 2ei arctan( � NS )

�
e� 2i arctan( � NS )

2
�
1 � ei arctan( � NS )

� g20g11

1

A �
1
2

jg11j2 �
1
4

jg02j2 ;

(3.19)
where ei arctan( � NS ) = � (� NS ) :

We state the following theorem on Neimark-Sacker bifurcation.

Theorem 3.1. If ( 3.6) holds, a (� NS ) 6= 0 and the parameter� changes its value in small
vicinity of NSBE � ; then the model (1.3) passes through a Neimark-Sacker bifurcation at
only �xed point E � : Moreover if a (� NS ) > 0 (respectively < 0) ; then there exists a unique
repelling (respectivelyattracting) invariant closed curve which bifurcates fromE � :

4. Chaos control

In dynamical systems, it is expected that the system be optimized with respect to some
performance criterion and chaos be avoided. Controlling chaos in discrete-time systems is
a topic of great interest for many researchers in recent time [5� 9].

Chaos control can be obtained using various methods in discrete-time systems. To
control the chaos in the system (1.3), we study feedback control strategy. First, we apply
the OGY method to the system (1.3) which was �rst time proposed by [31]. For this,
corresponding to the system (1.3) we consider the following controlled system:

N t+1 = N t + �N t (r1 � "P t ) = f (N t ; Pt ; r1) ;

Pt+1 = Pt + �P t (r2 � �
Pt

N t
) = g(N t ; Pt ; r1) ;

(4.1)

where r1 is taken as the controlling parameter. Furthermore, r1 is restricted to line in
some small intervaljr1 � r10 j < � with � > 0, and r10 denotes the nominal value belonging
to chaotic region. We apply the stabilizing feedback control strategy in order to move the
trajectory towards the desired orbit. Suppose that (N � ; P � ) be unstable �xed point of the
system (2) in chaotic region produced by the emergence of Neimark-Sacker bifurcation,
then the system (4.1) can be approximated in the neighborhood of the unstable �xed point
(N � ; P � ) by the following linear map:

�
N t+1 � N �

Pt+1 � P �

�
� A

�
N t � N �

Pt � P �

�
+ B [r1 � r10 ] ; (4.2)

where

A =

2

4
@f(N � ;P � ;r 10 )

@Nt

@f(N � ;P � ;r 10 )
@Pt

@g(N � ;P � ;r 10 )
@Nt

@g(N � ;P � ;r 10 )
@Pt

3

5 ;

and

B =

2

4
@f(N � ;P � ;r 10 )

@r
@f(N � ;P � ;r 10 )

@r

3

5 =

"
� 2 r 10
r 2"
0

#

:
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On the other hand the system (4.1) is controllable provided that the following matrix

C = [ B : AB ]

=

2

4
� 2 r 10
r 2"

� 2 r 10
r 2"

0 ��r 2 r 10
"

3

5 :
(4.3)

Since all parameters are positive, therefore rank ofC is 2:

Now, we suppose that [r1 � r10 ] = � K
�

N t � N �

Pt � P �

�
; where K = [ � 1 � 2] ; then the

system (4.2) can be written as follows:
�

N t+1 � N �

Pt+1 � P �

�
� [A � BK ]

�
N t � N �

Pt � P �

�
: (4.4)

The corresponding controller can be written as,

N t+1 = N t + �N t (( r10 � � 1 (N t � N � ) � � 2 (Pt � P � )) � "P t ) ;

Pt+1 = Pt + �P t (r2 � �
Pt

N t
):

(4.5)

Furthermore, the �xed point (N � ; P � ) of (4.5) is locally asymptotically stable if and only
if both eigenvalues of the matrix A � BK lie in an open unit disk. The Jacobian matrix
A � BK of the controlled system (4.5) can be written as follows:

A � BK =

2

6
4

1 �
� 2� 1r10

r2"
�

� 2r10

r2

�
1 +

� 2

"

�

�r 2
2

" 1 + r2 (� � 2� )

3

7
5 :

The characteristic equation of the Jacobian matrix A � BK is given by

P(� ) = � 2 �

 

2 + r2 (� � 2� ) �
� 2� 1r10

r2"

!

� + 1 + r2 (� � 2� )

�
� 2r2r10

"

�
� 1

r 2
2

(1 + r2 (� � 2� )) + �
�

1 +
� 2

"

��
:

(4.6)

Let � 1 and � 2 be the eigenvalues of characteristic equation (4.6) ; then

� 1 + � 2 = 2 + r2 (� � 2� ) �
� 2� 1r10

r2"
; (4.7)

� 1� 2 = 1 + r2 (� � 2� ) �
� 2r2r10

"

�
� 1

r 2
2

(1 + r2 (� � 2� )) + �
�

1 +
� 2

"

��
(4.8)

are valid.
In order to obtain the lines of marginal stability we must solve the equations � 1 = � 1

and � 1� 2 = 1 : These restrictions make sure that� 1 and � 2 have absolute value less than
1. Assume that � 1� 2 = 1 , then Eq. (4.8) implies

L 1 := �
� 2� 1r10

r2"
(r2 (� � 2� ) + 1) +

��r 2� 2r10

"
+ r2 (� � � (�r 1 � 2)) = 0 : (4.9)

Moreover, we suppose that� 1 = 1 ; then (4.7) and (4.8) yield,

L 2 := �
� 2� 1r10

"
(� � 2� ) +

��r 2� 2r10

"
+ ��r 2r10 = 0 : (4.10)

Finally, taking � 1 = � 1 and using the equations (4.7) and (4.8) we get

L 3 := �
� 2� 1r10

r2"
(r2 (� � 2� ) + 2) +

��r 2� 2r10

"
+ r2 (2 (� � 2� ) + ��r 10 ) + 4 = 0 : (4.11)

Then, stable eigenvalues lie within the triangular region in � 1� 2 plane bounded by the
straight lines L 1; L 2; L 3 for particular parametric values.
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5. Numerical simulations

Example 5.1. For the parameter valuesr1 = 4 ; r2 = 14; � = 0 :2; � = 50, " = 0 :4, and the
initial condition (N0; P0) = (34 ; 9:6); the positive �xed point of the system (2) is obtained
as (N � ; P � ) = (35 :71428571; 10): From Proposition 2.3 (i.b), the �xed point (N � ; P � ) of
the system (1.3) is locally asymptotically stable (See Figure 1).

Figure 1. A stable �xed point for the system ( 1.3) for r 1 = 4 ; r 2 = 14; � =
0:2; � = 50; " = 0 :4, and the initial condition (N0; P0) = (34 ; 9:6).

Example 5.2. In this example, we give the bifurcation diagrams and phase portraits for
the system (1.3) around the �xed point (N � ; P � ) to con�rm the above analytic results and
show some interesting complex dynamical behaviors in system (1.3) : We will choose� as
bifurcation parameter. We obtain the Neimark-Sacker bifurcation point as � NS = 0 :25.
For the parameter valuesr1 = 4 ; r2 = 14; � = 50; " = 0 :4; � NS = 0 :25; the positive �xed
point (N � ; P � ) of the model (1.3) is evaluated as(N � ; P � ) = (35 :71428571; 10) : Because
of computing the coe�cients of normal form, �xed point (N � ; P � ) can be transformed into
origin by change of variables as follows:

x = N � 35:71428571;

y = P � 10:

So, the system (1.3) converts to

xn+1 = xn + 35:71428571� 0:1 (xn + 35:71428571)yn ; (5.1)

yn+1 = yn + 10 +
(yn + 10)

�
14�

50 (yn + 10)
xn + 35:71428571

�

4
:

Using the above parameters, we get

J (N � ; P � ) =
�

1 � 3:571428571
0:9800000002 � 2:5

�
:

The eigenvalues are obtained as

� 1 = � 0:7500000000 + 0:6614378280i;

� 2 = � 0:7500000000� 0:6614378280i:

Let q; p2 C2 be complex eigenvectors corresponding to� 1, � 2, respectively,

q � (� 0:6749365589 + 1:785714285i; i )T ;
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and

p � (� 0:7408103671� 3:108773710:10^(� 10)i; 1:322875655 + 0:5000000004i )T :

To obtain the normalization hp; qi = 1 ; we can take normalized vectors as

q = ( � 0:6749365589 + 1:785714285i; i )T

and

p = ( � 0:7408103671� 0:310877371010� 9i; � 1:322875655 + 0:5000000004i )T :

By using the formula (3.18) the coe�cients of the normal of the system (4.1) can be
computed as follows:

g20(� ) = 0 :2753741158� 0:1000000000i;

g11(� ) = � 0:05000000002� 0:1376870578i;

g02(� ) = 0 :1403868039� 0:2571428570i;

g21(� ) = 0 :

From (3.19), the critical part is obtained as a(� NS ) = 0 :01023799478> 0: Therefore, a
subcritical Neimark-Sacker bifurcation occurs at � NS = 0 :25 and it shows correctness of
Theorem 3.1. The bifurcation diagram and the phase portrait of the system (1.3) are
shown in Figure 2 and Figure 3 where the initial point is (N0; P0) = (34 ; 9:5):

(a) (b)

Figure 2 . Bifurcation diagram and MLE for the system ( 1.3) for values of
r1 = 4 ; r2 = 14; � = (0 :23; 0:26:); � = 50; " = 0 :4, and the initial condition

(N0; P0) = (34 ; 9:5).

From Figure 2, we observe that the �xed point (N � ; P � ) = (35 :71428571; 10) of the
system (1.3) is stable for � < 0:25 and loses its stability at � = 0 :25, and invariant close
curves appear from the positive �xed point when the parameter� exceeds0:25: The phase
portraits of the bifurcation diagrams in Figure 2 for di�erent values of � are displayed
in Figure 3, which clearly depicts the process of how a smooth invariant circle bifurcates
from the stable �xed point (N � ; P � ) = (35 :71428571; 10). When � exceeds0:25; then the
�xed point (N � ; P � ) = (35 :71428571; 10) is unstable and meanwhile a repelling invariant
closed curve bifurcates from the positive �xed point.
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Figure 3 .Phase portraits of the system (1.3) for di�erent values of � .

Example 5.3. Let r1 = 3 :7037037037; r2 = 12; � = 0 :27; � = 50, " = 0 :4; r1 2 [3:6; 4:5],
and (N0; P0) = (34 ; 8:1); then the system (1.3) undergoes Neimark-Sacker bifurcation.
For these parametric values, bifurcation diagram, and corresponding maximum Lyapunov
exponents are plotted in Figure 4. The system (1.3) has a unique positive equilibrium
point (N � ; P � ) = (38 :58024692; 9:259259260)at these parametric values and characteristic
values of the Jacobian matrix evaluated at this �xed point are given by

j� 1;2j = j� 0:62� 0:7846018095I j = 1 :

In order to discuss the OGY feedback control method for the system (1.3), we take r10 =
3:725:Then corresponding controlled system is given by

N t+1 = N t + 0 :27N t ((3:725� � 1(N � 38:80208332)� � 2(P � 9:3125)) � "P t ) ;

Pt+1 = Pt + 0 :27Pt (12 � 50
Pt

N t
); ];

(5.2)

when K = [ � 1 � 2] and (N � ; P � ) = (38 :58024692; 9:259259260)is unstable �xed point of
the system (1.3). We have

A =
�

1 � 4:190625
0:7776 � 2:24

�
;

B =
�

10:47656250
0

�
;
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and

C = [ B : AB ]

=
�

10:47656250 10:47656250
0 8:146575000

�
:

Then it is easy to check that the rank of C matrix is 2. Therefore the system (5.2) is
controllable. Then, the Jacobian matrix A � BK of the controlled system (5.2) is given
by

A � BK =
�

1 � 10:47656250� 1 � 4:190625� 10:47656250� 2
0:7776 � 2:24

�
:

Moreover, the linesL 1; L 2, and L 3 for marginal stability are given by

L 1 = 0 :01863 + 23:4675� 1 + 8 :146575� 1 = 0 ;

L 2 = 3 :25863 + 33:94406250� 1 + 8 :146575� 2 = 0 ;

and

L 3 = 0 :77863 + 12:99093750� 1 + 8 :146575� 2 = 0 :

Then, the stable triangular region bounded by marginal lines L 1; L 2, and L 3 for the
controlled system (5.2) is shown in Figure 5.

(a) (b) (c)

Figure 4. Bifurcation diagrams and MLE for the system (1.3) for values of r2 = 12
� = 0 :27; � = 50; " = 0 :4; r1 = (3 :6; 4:5), and the initial condition (N0; P0) = (34 ; 8:1).

(a) Bifurcation diagram for Pt (b) Bifurcation diagram for N t (c) Maximum Lyapunov
exponents.
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Figure 5 .Triangular stability region bounded by L 1; L 2 and L 3 for the controlled system
(5.2) .

6. Discussions

Previous studies have showed that discrete-time population models play an impor-
tant role in mathematical biology [4, 12� 14, 24, 34, 36]. So, we investigate the dynamical
behaviors of a discrete predator-prey model. We obtain the stability conditions of the co-
existence �xed point. By using bifurcation theory [ 12,24,36] we show that the model (1.3)
undergoes Neimark-Sacker bifurcation. Further, we present some numerical simulations
by using MATLAB program to verify the theoretical results. We display that when the
bifurcation parameter � passes a crucial bifurcation value, the stability of the coexistence
�xed point of the model ( 1.3) changes from stable to unstable and Neimark-Sacker bi-
furcation occurs at this critical value. Moreover, the model (1.3) displays the complex
dynamics for di�erent parameter values in certain regions. Therefore, we can assert that
the parameter � has a powerful e�ect on the stability of the model (1.3).

Model (1.2) and model (1.3), which is the discrete version of model (1.2), have both
same and di�erent dynamic properties. For example, the �xed point of model (1.2) and
model (1.3) is the same. In addition, in study [2], the periodic solution occurs as a result
of Hopf bifurcation that is continuous case of Neimark-Sacker bifurcation in model (1.2)
at the delay parameter. However, in model (1.3) is occurred both the Neimark Sacker
bifurcation and the Flip bifurcation [ 35]. Under the in�uence of the Neimark-Sacker
bifurcation dynamically unstable invariant closed curves are produced. The positive sign
of the maximum Lyapunov exponents in Figure 2(b) con�rms the existences of the chaos
and period window as parameter� varying. In the context of biology, model (1.3) can
be viewed as a predator�prey system interaction. In terms of the latter, the existence
of a Neimark�Sacker bifurcation in model (1.3) implies that both the prey and predator
populations can oscillate around some mean values, and these oscillations will continue
inde�nitely under suitable conditions.These results show far richer dynamics of the discrete
model compared to the continuous model.

On the other hand, the Neimark-Sacker bifurcation is successfully controlled with OGY
control method. From our numerical research, it is clear that OGY method based on
feedback control strategy can restore the stability. This controlling strategy is e�ective
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in order to improve or entirely disappear the chaos due to occurrence of Neimark-Sacker
bifurcation.

References

[1] A. Atabaigi, Multiple bifurcations and dynamics of a discrete-time predator-prey sys-
tem with group defense and non-monotonic functional response, Di�er. Equ. Dyn.
Syst. 28, 107-132, 2020.

[2] C. Celik, The stability and Hopf bifurcation for a predator-prey system with time
delay, Chaos Solitons Fractals,37, 87�99, 2008.

[3] L. Cheng and H. Cao,Bifurcation analysis of a discrete-time ratio-dependent predator-
prey model with Allee E�ect, Commun. Nonlinear Sci. Numer. Simul. 38, 288�302,
2016.

[4] M. Danca, S. Condreanu and B. Bako,Detailed analysis of a nonlinear prey-predator
model, J. Biol. Phys. 23 (1), 11�20, 1997.

[5] Q. Din, A Novel chaos control strategy for discrete-time brusselator models, J. Math.
Chem. 56, 3045�3075, 2018.

[6] Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis Models, J.
Math. Chem. 56 (3), 904�931, 2018.

[7] Q. Din, Bifurcation analysis and chaos control in a second-order rational di�erence
equation, Int. J. Nonlinear Sci. Numer. Simul. 19 (1), 53�68, 2018.

[8] Q. Din, Stability, bifurcation analysis and chaos control for a predator-prey system,
J. Vib. Control 25 (3), 612�626, 2019.

[9] Q. Din and M. Hussain, Controlling chaos and Neimark-Sacker bifurcation in a host-
parasitoid model, Asian J. Control, 21 (4), 1�14, 2019.

[10] W. Du, J. Zhang, S. Qin and J.Yu, Bifurcation analysis in a discrete SIR epidemic
model with the saturated contact rate and vertical transmission, J. Nonlinear Sci.
Appl. 9, 4976�4989, 2016.

[11] E.M. Elabbasy, A.A. Elsadany and Y.Zhang, Bifurcation analysis and chaos in a
discrete reduced Lorenz system, Appl. Math. Comput. 228, 184�194, 2014.

[12] S.N. Elaydi, An Introduction to Di�erence Equations , Springer-Verlag, New York,
NY, USA, 1996.

[13] A. Gkana and L. Zachilas, Incorporating prey refuge in a prey-predator model with
a Holling Type I functional response: random dynamics and population outbreaks, J.
Biol. Phys. 39 (4), 587�606, 2013.

[14] A. Gkana and L. Zachilas, Non-overlapping generation species: Complex Prey-
Predator Interactions, Int. J. Nonlinear Sci. Numer. Simul. 16 (5), 207�219, 2015.

[15] Z. He and X. Lai, Bifurcation and Chaotic Behaviour of a Discete Time Predator-Prey
System, Nonlinear Anal. Real World Appl. 12 (1), 403�417, 2011.

[16] Z.M. He and B.O. Li, Complex dynamic behavior of a discrete-time predator-prey
system of Holling-III Type, Adv. Di�erence Equ. 2014, Art. No. 180, 2014.

[17] Z.Hu, Z.Teng and L. Zhang, Stability and bifurcation analysis of a discrete predator-
prey model with nonmonotonic functional response, Nonlinear Anal. Real World Appl.
12, 2356�2377, 2011.

[18] Z. Jing and Y. Jianping, Bifurcation and chaos in discrete-time predatorprey system,
Chaos Solitons Fractals27 (1), 259�277, 2006.

[19] S. Kartal, Dynamics of a plant-herbivore model with di�erential-di�erence equations,
Cogent Math. 3 (1), 1136198, 2016.

[20] S. Kartal, Flip and Neimark�Sacker bifurcation in a di�erential equation with piece-
wise constant arguments model, J. Di�erence Equ. Appl. 23, 763�778, 2017.

[21] S.Kartal and F. Gurcan, Global behaviour of a predator�prey like model with piecewise
constant arguments, J. Biol. Dyn. 9 (1), 157�171, 2015.



1776 F. Kangalgil, S.Isik

[22] A.Q. Khan, Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-
prey model, SpringerPlus 5 (1), Art. No. 126, 2016.

[23] A.Q. Khan, Stability and Neimark-Sacker bifurcation of a ratio-dependence predator-
prey model, Math. Methods Appl. Sci. 40, 4109�4119, 2017.

[24] Y. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York,
NY, USA, 2nd edition, 1998.

[25] P.H. Leslie and J.C Gower,The properties of a stochastic model for the predator-prey
type of interaction between two species, Biometrika, 47, 219�234, 1960.

[26] S. Li and W. Zhang, Bifurcations of a discrete prey-predator model with Holling type
II functional response, Discrete Contin. Dyn. Syst. Ser. B. 14, 159�176, 2010.

[27] J. Liu, P. Baoyang and Z. .Tailei, E�ect of discretization on dynamical behavior of
SEIR and SIR models with nonlinear incidence, Appl. Math. Lett. 39, 60�66, 2015.

[28] X. Liu and X. Dongmei, Complex dynamic behaviors of a discrete-time predatorprey
system, Chaos Solitons Fractals,32 (1), 80�94, 2007.

[29] D. Lv, W. Zhang and Y. Tang, Bifurcation analysis of a ratio-dependent predator-prey
system with multipla delays, J. Nonlinear Sci. Appl. 9, 3479�3490, 2016.

[30] R.M. May, Simple mathematical models with very complicated dynamics, Nature, 261,
459�467, 1976.

[31] E. Ott, C. Grebogi and J.A. Yorke, Controlling chaos, Phys. Rev. Lett. 64 (11),
1196�1199, 1990.

[32] P.J. Pal and P.K. Mandal, Bifurcation Analysis of a Modi�ed Leslie-Gower Predator-
Prey Model with Beddington-De Angelis Functional Response and Strong Allee E�ect,
Math. Comput. Simulation 97, 123�146, 2014.

[33] S.M Rana and U. Kulsum, Bifurcation analysis and chaos control in a discrete-time
predator-prey system of Leslie type with simpli�ed Holling type IV functional response,
Discrete Dyn. Nat. Soc. 2017, Art. No. 9705985, 2017.

[34] H. Singh, J. Dhar and H.S. Bhatti, Discrete-time bifurcation behavior of a prey-
predator system with generalized predator, Adv. Di�erence Equ. 2015, Art. No. 206,
2015.

[35] G. Sucu, Bir Ayr�k Zamanl� Av-Avc� Modelinin Kararl�l�k ve Çatallanma , TOBB
Ekonomi ve Teknoloji Üniversitesi Fen Bilimler Enstitüsü, Yüksek lisans Tezi, Ankara,
2016.

[36] S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos,
Springer-Verlag, New York, NY, USA, 2003.

[37] L. Zhang and L. Zou, Bifurcations and control in a discrete predator-prey model with
strong Allee e�ect, Int. J. Bifur. Chaos, 28 (5), 1850062, 2018.

[38] J. Zhang, T. Deng, Y. Chu, S. Qin, W. Du, and H. Luo, Stability and bifurcation
analysis of a discrete predator-prey model with Holling type III functional response,
J. Nonlinear Sci. Appl. 9, 6228�6243, 2016.

[39] S. Zhou, Y. Liu and G. Wang, The stability of predator-prey systems subject to the
Allee e�ects, Theoret. Population Biol. 67, 23�31, 2005.



Hacettepe Journal of

Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 49 (5) (2020), 1777 � 1787

DOI : /10.15672/hujms.535246

Research Article

On fourth Hankel determinant for functions
associated with Bernoulli's lemniscate

Muhammad Arif1�B, Sadaf Umar1�B, Mohsan Raza� 2�B, Teodor Bulboac 3�B,
Muhammad Umar Farooq1�B, Hasan Khan1�B

1Department of Mathematics, Abdul Wali Khan University, Mardan, Pakistan
2Department of Mathematics, Government College University, Faisalabad, Faisalabad, Pakistan

3Faculty of Mathematics and Computer Science, Babe³-Bolyai University, 400084 Cluj-Napoca, Romania

Abstract
The aim of this paper is to �nd an upper bound of the fourth Hankel determinant H4(1) for
a subclass of analytic functions associated with the right half of the Bernoulli's lemniscate
of the form

�
x2 + y2� 2 � 2

�
x2 � y2�

= 0 . The problem is also discussed for 2-fold and 3-fold
symmetric functions. The key tools in the proof of our main results are the coe�cient
inequalities for classP of functions with positive real part.

Mathematics Subject Classi�cation (2010). 30C45, 30C50

Keywords. starlike functions, di�erential subordination, Bernoulli's lemniscate, Hankel
determinants

1. Introduction

Let A denote the family of all functions f which are analytic in the open unit disc
U := f z 2 C : jzj < 1g and normalized by f (0) = f 0(0) � 1 = 0. Therefore, each function
f 2 A has a power series expansion of the form

f (z) = z +
1X

n=2

an zn ; z 2 U: (1.1)

Also, let S denote a subclass ofA which contains the univalent functions.
If f and g are analytic functions in U; then we say that f is subordinate to g; denoted

by f � g; if there exists an analytic function w in U with w (0) = 0 and jw(z)j < jzj such
that f (z) = g(w(z)) : Moreover if the function g is univalent in U, then we have

f (z) � g (z) , f (0) = g(0) and f (U) � g(U):

Consider the subclassSL of A de�ned by

SL :=

(

f 2 A :

�
�
�
�
�

�
zf 0(z)
f (z)

� 2

� 1

�
�
�
�
�

< 1; z 2 U

)

:
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The geometrical interpretation of the fact f 2 SL is that, for any z 2 U, the ratio
zf 0(z)
f (z)

lies in the region bounded by the right half side of the Bernoulli's lemniscate by

the inequality
�
�w2 � 1

�
� < 1. We can easily see that a functionf 2 A belongs to the class

SL, if and only if
zf 0(z)
f (z)

�
p

1 + z; (1.2)

where the square root function is considered at principal branch, that is
p

1 + z
�
�
�
z=0

= 1 : (1.3)

Remark that the class SL was introduced by Sokól and Stankiewicz [21], and further
studied by di�erent authors in [ 2,11,17� 20].

For a function f 2 A of the form (1:1), the q-th Hankel determinant Hq (n), with q � 1
and n � 1, was studied by Noonan and Thomas [14] and it is de�ned by

Hq (n) :=

�
�
�
�
�
�
�
�
�

an an+1 : : : an+ q� 1
an+1 an+2 : : : an+ q
...

... : : :
...

an+ q� 1 an+ q : : : an+2 q� 2

�
�
�
�
�
�
�
�
�

:

Remarks 1.1. (i) It is well-known that the Fekete-Szeg® functional
�
�a3 � a2

2
�
� is H2(1),

and Fekete and Szegö [9] generalized the estimate as
�
�a3 � �a 2

2
�
� with � 2 R and f 2 S.

(ii) Moreover, we also know that the functional
�
�a2a4 � a2

3
�
� is in fact H2(2).

(iii) The sharp upper bound of the second Hankel determinant for the familiar classes
of starlike and convex functions was studied by Janteng, Halim, and Darus [12]. Thus, for
f 2 S� and f 2 C they obtained that

�
�a2a4 � a2

3
�
� � 1 and 8

�
�a2a4 � a2

3
�
� � 1, respectively.

For second Hankel determinant see also [8].
(iv) In 2010, Babalola [5] considered the third Hankel determinant H3(1) and obtained

the upper bound of the well-known classes of bounded-turning, starlike, and convex func-
tions. Later, in 2013 Raza and Malik [16] investigated the upper bound ofH3(1) for the

classSL, and they obtained that jH3(1)j �
43
576

.

(v) Recently Arif et al. [ 3, 4] have investigated H4(1) for some subclasses of univalent
functions.

In the present investigation, we determine the upper bound ofH4(1) for the subclass
SL of analytic and normalized functions in U. To prove our main results we need the
following de�nition and lemmas.

We recall the classP of analytic functions p of the form

p(z) = 1 +
1X

n=1

cnzn ; z 2 U; (1.4)

with Re p(z) > 0 in U. The classP is known as the class of functions with positive real
part.

It is well-known (see, for example, [6] or [10, p. 80]) that, if p 2 P and has the form
(1:4), then the following sharp coe�cient estimates hold:

jcn j � 2; n 2 N: (1.5)

Lemma 1.2. If p 2 P and has the form(1:4) ; then
�
�
�
�
�
c2 �

c2
1

2

�
�
�
�
�

� 2 �

�
�c2

1
�
�

2
;

where the above inequality is proved in [1].
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Lemma 1.3. [7] If p 2 P and has the form(1:4), then

jcn+ k � �c nck j < 2for 0 � � � 1:

This result is due to Ravichandran and Verma [15].

Lemma 1.4. If p 2 P and has the form(1:4), then
�
�
�Jc3

1 � Kc1c2 + Lc3

�
�
� � 2 (jJ j + jK � 2J j + jJ � K + L j) :

Proof. It is easy to see that
�
�Jc3

1 � Kc1c2 + Lc3
�
� =

�
�J

�
c3 � 2c1c2 + c3

1
�

+ ( K � 2J ) (c3 � c1c2) + ( J � K + L) c3
�
�

� j J j
�
�c3 � 2c1c2 + c3

1
�
� + jK � 2J j jc3 � c1c2j + jJ � K + L j jc3j

� 2 (jJ j + jK � 2J j + jJ � K + L j) ;

where we have used the Lemma1.3 for � = 1 ; n = 1 ; k = 2 , and a result due to Libra and
Zlotkiewicz [13]. �

Lemma 1.5. [16] If f 2 SL and has the form(1:1), then
�
�
�a3 � a2

2

�
�
� �

1
4

:

Lemma 1.6. If f 2 SL and has the form(1:1), then

ja2j �
1
2

; ja3j �
1
4

; ja4j �
1
6

; ja5j �
1
8

:

These estimates are sharp.

The �rst three bounds were obtained by Sokól [19] and the bound for ja5j was proved
in [15].

Lemma 1.7. If f 2 SL and has the form(1:1), then
�
�
�a2a4 � a2

3

�
�
� �

1
16

:

This result was found by Sokól [19].

2. Main results

Theorem 2.1. If f 2 SL and of the form (1:1), then
�
�
�a3a5 � a2

4

�
�
� � 0:080574496:

Proof. If f 2 SL, by using the subordination relation (1:2), it follows that

zf 0(z)
f (z)

� �( z); (2.1)

where �( z) =
p

1 + z is considered at principal branch(1:3). From (2.1), there exists a
function w, analytic in the unit disk U, with jw(z)j � 1 in U, such that

zf 0(z)
f (z)

= �( w(z)) ; z 2 U: (2.2)

Thus, if we de�ne the function p by

p(z) :=
1 + w(z)
1 � w(z)

= 1 + c1z + c2z2 + : : : ; z 2 U; (2.3)

it follows that p 2 P and

w(z) =
p(z) � 1
p(z) + 1

; z 2 U:



1780 M. Arif, S. Umar, M. Raza, T. Bulboac , M.U. Farooq, H. Khan

From (2.2) and the above relation we obtain

zf 0(z)
f (z)

=

s
2p(z)

p(z) + 1
; z 2 U: (2.4)

Now, according to the power series expansions(1:1) and (1:4), a simple computation
shows that

s
2p(z)

p(z) + 1
= 1 +

1
4

c1z +
�

1
4

c2 �
5
32

c2
1

�
z2 +

�
1
4

c3 �
5
16

c1c2 +
13
128

c3
1

�
z3

+
�

�
141
2048

c4
1 +

39
128

c2
1c2 �

5
32

c2
2 +

1
4

c4 �
5
16

c1c3

�
z4 + : : : ; (2.5)

and

zf 0(z)
f (z)

= 1 + a2z +
�
2a3 � a2

2

�
z2 +

�
3a4 � 3a2a3 + a3

2

�
z3 + : : : ; z 2 U: (2.6)

By comparing (2:5) and (2:6) ; we have

a2 =
1
4

c1; (2.7)

a3 =
1
8

�
c2 �

3
8

c2
1

�
; (2.8)

a4 =
1
12

�
c3 �

7
8

c1c2 +
13
64

c3
1

�
; (2.9)

a5 =
�

�
49

6144
c4

1 +
17
384

c2
1c2 �

11
192

c1c3 �
1
32

c2
2 +

1
16

c4

�
; (2.10)

a6 = �
223
7680

c3
1c2 +

3
80

c2
1c3 +

77
1920

c1c2
2 �

3
64

c1c4 �
5
96

c2c3

+
181

40960
c5

1 +
1
20

c5; (2.11)

a7 =
323
4608

c1c2c3 �
17
384

c2c4 �
19
480

c1c5 �
13
576

c2
3 +

19
1536

c3
2 +

1
24

c6

�
32303

11796480
c6

1 �
4717

184320
c3

1c3 +
33

1024
c2

1c4 �
7457

184320
c2

1c2
2 +

30211
1474560

c4
1c2:(2.12)

From (2:8) ; (2:9), and (2:10) ; we obtain
�
�
�a3a5 � a2

4

�
�
� =

�
�
�
� �

89
147456

c2c4
1 +

31
18432

c2
1c2

2 +
23

4608
c2c1c3 �

1
256

c3
2 +

1
128

c2c4 +
103

1179648
c6

1

�
5

36864
c3

1c3 �
3

1024
c2

1c4 �
1

144
c2

3

�
�
�
� :

Now, re-arranging the above equation, we have

�
�
�a3a5 � a2

4

�
�
� =

�
�
�
�
�
�

103
589824

c4
1

 

c2 �
c2

1

2

!

+
27

16384
c2

�
253
486

c2
1 � c2

�  

c2 �
c2

1

2

!

�
23

9216
c1c3

�
5
92

c2
1 � c2

�
+

1
144

c3

�
23
64

c1c2 � c3

�

�
1

256
c2

�
37
64

c2
2 � c4

�
�

1
256

c4

�
3
4

c2
1 � c2

� �
�
�
� :

Applying the triangle inequality, Lemma 1:2, and Lemma 1:3; we have

�
�
�a3a5 � a2

4

�
�
� �

103
589824

jc1j4
 

2 �
jc1j2

2

!

+
27

4096

 

2 �
jc1j2

2

!

+
23

2304
jc1j +

17
288

: (2.13)
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Taking jc1j = y 2 [0; 2] in (2:13) ; it gives
�
�
�a3a5 � a2

4

�
�
� �

103
589824

y4

 

2 �
y2

2

!

+
27

4096

 

2 �
y2

2

!

+
23

2304
y +

17
288

: (2.14)

The above function gets its maximum value aty = 1 :573483035; in (2:14) ; we have
�
�
�a3a5 � a2

4

�
�
� � 0:080574496:

�

Theorem 2.2. If f 2 SL and of the form (1:1), then

ja3a4 � a2a5j �
173

532224

p
39963 +

1
24

' 0:1066468:

Proof. From (2:7) ; (2:8) ; (2:9), and (2:10) ; we have

ja3a4 � a2a5j =
�
�
�
� �

59
49152

c5
1 +

17
3072

c3
1c2 �

1
96

c2
1c3 +

1
768

c1c2
2 +

1
64

c1c4 �
1
96

c2c3

�
�
�
� :

By re-arrangement of the above equation, we get

ja3a4 � a2a5j =
�
�
�

77
12288

c1

� 59
154

c2
1 � c2

��
c2 �

c2
1

2

�
+

1
96

c2

� 93
128

c1c2 � c3

�

�
1
64

c1

� 2
3

c1c3 � c4

� �
�
�:

Now applying the triangle inequality, Lemma 1:2, and Lemma 1:3; we have

ja3a4 � a2a5j �
77

6144
jc1j

 

2 �
jc1j2

2

!

+
1
24

+
1
32

jc1j : (2.15)

Let jc1j = y 2 [0; 2] ; then (2:15) ; becomes

ja3a4 � a2a5j �
77

12288
y

 

2 �
y2

2

!

+
1
24

+
1
32

y:

The above function has its maximum value aty = 2
231

p
39963: This implies that

ja3a4 � a2a5j �
173

532224

p
39963 +

1
24

' 0:1066468:

�

Theorem 2.3. If f 2 SL and of the form (1:1), then

ja5 � a2a4j �
7
16

:

Proof. From (2:7) ; (2:9), and (2:10) ; we obtain

ja5 � a2a4j =

�
�
�
�
�
� c1

�
25

2048
c3

1 �
1
16

c1c2 +
5
64

c3

�
�

1
16

 
c2

2

2
� c4

! �
�
�
�
�
:

Now by using the triangle inequality, Lemma 1:3, and Lemma 1:4; we have

ja5 � a2a4j �
7
16

:

�

Theorem 2.4. If f 2 SL and of the form (1:1), then

ja4 � a2a3j �
1
6

:

This result is sharp for the function f (z) = z exp

 
zR

0

p
1+ t3

t dt

!

= z + 1
6z4 � 1

144z7 + � � � :
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Proof. From (2:7) ; (2:8), and (2:9) ; we have

ja4 � a2a3j =
�
�
�
�

11
384

c3
1 �

5
48

c1c2 +
1
12

c3

�
�
�
� :

Using Lemma 1:4; we obtain

ja4 � a2a3j �
1
6

:

�

Theorem 2.5. If f 2 SL and of the form (1:1), then

ja3a7 � a4a6j �
125999
589824

:

Proof. From (2:8) ; (2:9) ; (2:11), and (2:12) ; we have

ja3a7 � a4a6j =
�
�
�

19
12288

c4
2 +

4493
83886080

c8
1 �

1
240

c3c5 �
17

3072
c2

2c4 +
7

4608
c2c2

3

+
1

192
c2c6 �

721
1474560

c6
1c2 �

25
9216

c2
1c3

2 +
9799

5898240
c4

1c2
2

+
31

30720
c3

1c5 �
127

61440
c2

1c2
3 �

1
512

c2
1c6 +

773
3932160

c5
1c3 �

47
65536

c4
1c4

+
299

184320
c1c2

2c3 �
1

768
c1c2c5 �

331
737280

c3
1c2c3 +

11
4096

c2
1c2c4

+
1

256
c1c3c4

�
�
�:

By re-arranging the above equation, we obtain

ja3a7 � a4a6j =
�
�
�
�

241
92160

c2c3

�
299
964

c2c1 � c3

�
+

149
24576

c2
2

�
299
2235

c3c1 � c4

�

�
149

49152
c2

2

�
4537
47680

c2
2 � c4

�
�

1
768

c2 (c1c5 � c6)

+
331

1474560
c3

1c3

�
2319
2648

c2
1 � c2

�
�

31
30720

c3
1

�
331
1488

c2c3 � c5

�

�
144139

188743680
c4

1

�
40437
288278

c2
1 � c2

�  

c2 �
c2

1

2

!

+
1

240
c3

�
15
16

c1c4 � c5

�

�
9619

5242880
c2

2

�
169429
173142

c2
1 � c2

�  

c2 �
c2

1

2

!

+
127

30720
c2

3

 

c2 �
c2

1

2

!

+
41

16384
c4

�
47
82

c2
1 � c2

�  

c2 �
c2

1

2

!

+
1

256
c6

 

c2 �
c2

1

2

! �
�
�
�
�
:

Applying the triangle inequality, Lemma 1:2, and Lemma1:3; the above equation becomes

ja3a7 � a4a6j �
144139

94371840
jc1j4

 

2 �
jc1j2

2

!

+
96409

1966080

 

2 �
jc1j2

2

!

+
215

73728
jc1j3 +

10649
92160

: (2.16)

Let jc1j = y 2 [0; 2] ; then (2:16) becomes

ja3a7 � a4a6j �
144139

94371840
y4

 

2 �
y2

2

!

+
96409

1966080

 

2 �
y2

2

!

+
215

73728
y3 +

10649
92160

:

Clearly, the above function is decreasing so by puttingy = 2 ; we have

ja3a7 � a4a6j �
125999
589824

:
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�

Theorem 2.6. If f 2 SL and of the form (1:1), then

ja4a7 � a5a6j � 0:2210481986:

Proof. From (2:9) ; (2:10) ; (2:11), and (2:12) ; it follows that

ja4a7 � a5a6j =
�
�
�
� �

1
2304

c1c3c5 +
83

18432
c1c2c2

3 �
1

2304
c2c3c4 �

7
2304

c1c2c6

+
583

737280
c3

1c2c4 +
669

655360
c3c4

1c2 +
1

640
c2

2c5 �
11

18432
c3c3

2

�
499

184320
c2

1c3c2
2 �

137
184320

c1c2
2c4 �

3
1280

c2
1c3c4 +

31
46080

c2
1c2c5

+
3

1024
c1c2

4 �
20131

1811939328
c9

1 �
1

320
c4c5 �

137
1310720

c5
1c4 +

259
737280

c1c4
2

�
13

6912
c3

3 �
5

18432
c4

1c5 +
13

18432
c3

1c6 +
527

1105920
c3

1c3
2 �

10271
23592960

c5
1c2

2

+
439633

4529848320
c7

1c2 �
3

8192
c3

1c2
3 �

515
4718592

c6
1c3 +

1
288

c3c6

�
�
�
� :

This implies that

ja4a7 � a5a6j =

�
�
�
�
�

18934
11796480

c2
1c3

�
2575
18934

c2
1 � c2

�  

c2 �
c2

1

2

!

+
1

3840
c2

�
2167
256

c3c2 � c5

�  

c2 �
c2

1

2

!

+
3

1024
c1c2

4

+
3

4096
c1c2

3

 

c2 �
c2

1

2

!

+
13

9216
c1

�
5
13

c1c5 � c6

�  

c2 �
c2

1

2

!

+
323519

566231040
c3

1c2
2

 

c2 �
c2

1

2

!

+
10739

56623104
c1c3

2

 

c2 �
c2

1

2

!

+
3431

2949120
c1c4

�
1233
6862

c2
1 � c2

�  

c2 �
c2

1

2

!

+
169489

1132462080
c5

1

�
100655
677956

c2
1 � c2

�  

c2 �
c2

1

2

!

+
3

640
c3c4

 

c2 �
c2

1

2

!

�
1

288
c3

�
13
24

c2
3 � c6

�
+

793056
283115520

c3
2

�
45761
793056

c1c2 � c3

�

+
59

11520
c2c3

�
695
944

c1c3 � c4

�
+

1
320

c5

�
7
12

c2
2 � c4

�

+
5

3072
c1c2

�
413
1600

c2c4 � c6

�
�

1
2304

c3c1c5

�
�
�
� :

Using the triangle inequality, Lemma 1:2, and 1:3; we have

ja4a7 � a5a6j �
9467

1474560
jc1j2

 

2 �
jc1j2

2

!

+
15109
368640

 

2 �
jc1j2

2

!

+
322063

35389440
jc1j

 

2 �
jc1j2

2

!

+
323519

141557760
jc1j3

 

2 �
jc1j2

2

!

+
169489

566231040
jc1j5

 

2 �
jc1j2

2

!

+
23

1152
jc1j +

20677
184320

: (2.17)
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Let jc1j = y 2 [0; 2] ; then (2:17) becomes

ja4a7 � a5a6j �
9467

1474560
y2

 

2 �
y2

2

!

+
15109
368640

 

2 �
y2

2

!

+
322063

35389440
y

 

2 �
y2

2

!

+
323519

141557760
y3

 

2 �
y2

2

!

+
169489

566231040
y5

 

2 �
y2

2

!

+
23

1152
y +

20677
184320

:

As the above function attains its maximum value at y = 1 :082047787; so the above equa-
tion becomes

ja4a7 � a5a6j � 0:2210481986:
�

Theorem 2.7. If f 2 SL and of the form (1:1), then

jH3 (1)j �
43
576

:

Proof. Since

jH3 (1)j =

�
�
�
�
�
�

a1 a2 a3
a2 a3 a4
a3 a4 a5

�
�
�
�
�
�

= ja3j
�
�
�a2a4 � a2

3

�
�
� + ja4j ja4 � a2a3j + ja5j

�
�
�a3 � a2

2

�
�
� :

Using Lemma 1:6; Lemma 1:5, and Lemma 1:7; we get

jH3 (1)j �
43
576

:

�

Theorem 2.8. If f 2 SL and of the form (1:1), then

jH4 (1)j � 0:06786551485:

Proof. Since

jH4 (1)j �
�
�
�a2a4 � a2

3

�
�
� ja3a7 � a4a6j + ja2a3 � a4j ja4a7 � a5a6j

+ ja5j
n

ja3j
�
�
�a3a5 � a2

4

�
�
� + ja5j ja5 � a2a4j + ja6j ja4 � a2a3j

o

+ ja4j
n

ja4j
�
�
�a3a5 � a2

4

�
�
� + ja5j ja2a5 � a3a4j + ja6j

�
�
�a2a4 � a2

3

�
�
�
o

:

Using Theorem 2:1; Theorem 2:2; Theorem 2:3; Theorem 2:4; Theorem 2:7; Theorem
2:5; Theorem 2:6, and Lemma 1:6; we have

jH4 (1)j � 0:06786551485:

�

3. Bounds of jH4;1 (f )j for the sets SL(2) and SL(3)

Let m 2 N = f 1; 2; : : :g : A domain � is said to be m-fold symmetric if a rotation of �
about the origin through an angle 2�=m carries � on itself. It is easy to see that, an
analytic function f is m-fold symmetric in U, if

f
�
e2�i=m z

�
= e2�i=m f (z) ; (z 2 U) :

By S(m) ; we mean the set ofm-fold univalent functions having the following Taylor series
form

f (z) = z +
1X

k=1

amk +1 zmk +1 ; (z 2 U) : (3.1)
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The sub-family SL(m) of S(m) is the set of m-fold symmetric starlike functions associated
with lemniscate of Bernouli. More intuitively, an analytic function f of the form (3:1)
belongs to the family SL(m) ; if and only if

zf 0(z)
f (z)

=

s
2p(z)

p(z) + 1
with p 2 P(m) ;

where the setP(m) is de�ned by

P(m) =

(

p 2 P : p(z) = 1 +
1X

k=1

cmk zmk ; (z 2 U)

)

: (3.2)

Now we can prove the following theorem.

Theorem 3.1. Let f 2 SL(2) be of the form(3:1). Then

jH4;1 (f )j �
13

3072
:

Proof. Sincef 2 SL(2) ; therefore there exists a functionp 2 P(2) such that

zf 0(z)
f (z)

=

s
2p(z)

p(z) + 1
:

For f 2 SL(2) ; using the series form(3:1) and (3:2) when m = 2 , we can write

a3 =
1
8

c2; a5 = �
1
32

c2
2 +

1
16

c4; a7 =
19

1536
c3

2 �
17
384

c4c2 +
1
24

c6:

It is clear that for f 2 SL(2) ;

H4;1 (f ) := a3a5a7 � a3
3a7 + a2

3a2
5 � a3

5:

Therefore

H4;1 (f ) = �
4

786432

� 1
4

c2
2 � c4

��
20

�
7
20

c2
2 � c4

�
c2

2 +
�
16c2c6 + 48

�
c2c6 � c2

4

�� �
:

Using Lemma 1.3 and the triangle inequality, we get

jH4;1 (f )j �
8

786432
(160 + 64 + 192) =

13
3072

:

Hence the proof is complete. �

Theorem 3.2. If f 2 SL(3) be of the form(3:1) ; then

jH4;1 (f )j �
8

3456
:

Proof. Sincef 2 SL(3) ; therefore there exists a functionp 2 P(3) such that

zf 0(z)
f (z)

=

s
2p(z)

p(z) + 1
:

For f 2 SL(3) ; using the series form(3:1) and (3:2) when m = 3 , we can write

a4 =
1
12

c3; a7 = �
13
576

c2
3 +

1
24

c6:

It is clear that for f 2 SL(3) ;

H4;1 (f ) := � a2
4a7 + a4

4:
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Therefore

H4;1 (f ) =
17

82944
c4

3 �
1

3456
c2

3c6

= �
c2

3

3456

�
c6 �

58752
82944

c2
3

�
:

Using Lemma 1.3 and triangle inequality, we get

jH4;1 (f )j �
8

3456
:

Hence the proof is complete. �
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Abstract

We consider the oscillatory behavior of solutions to partial dynamic equation on time
scales. We establish several oscillation criteria by applying a Ricatti transformation. Ex-
amples are provided to justify our results.
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1. Introduction

Nowadays, the study of dynamic equations on time scale has received a lot of attention
because of their applications in nuclear physics, control theory, engineering mechanics and
other �elds. The concept of time scales was introduced by Stephen Hilger in 1988 to unify
discrete and continuous analysis. Bohner and Peterson [4] summarize the preliminaries
and some applications of calculus on time scale; after that there has been more attention to
research on time scales. Ahlbrandt and Morian [2] and Ho�acker [10] proposed the notion
for multivariate cases and studied partial dynamic equations on time scales. Various
de�nitions and extended ideas of the time scale calculus on the case of multivariate can
be found in [3,11].

Meanwhile oscillation properties of solutions plays a vital role in qualitative theory of
di�erence and di�erential equations. Many authors have studied the oscillation for various
types of equations such as di�erential and di�erence equation of integer and fractional
order; see [9, 12, 13, 19]. Also dynamic equation's oscillatory behavior on time scales has
been studied in [1, 5� 7, 14, 16� 18]. However, the oscillation of solutions of these type of
partial dynamic equations on time scales were not considered earlier. This motivate the
authors to establish the oscillation results of dynamic equations for multivariate cases.

We consider the partial dynamic equation

(� (t)y� t (x; t )) � t + p(x; t )y(x; t ) = � (t)r 2
xy(x; t ); (x; t ) 2 G � [t0; 1 )J; (1.1)
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with either the Neumann boundary condition

yN (x; t ) = 0 ; (x; t ) 2 @G� [t0; 1 )J; (1.2)

or the Dirichlet boundary condition

y(x; t ) = 0 ; (x; t ) 2 @G� [t0; 1 )J : (1.3)

Here G is a bounded domain inRn with piecewise smooth boundary@G, � t is the partial
dynamic operator with respect to t, r 2

xy =
P n

i =1 @2
x i x i

y, and N is the unit exterior normal
vector to @G. The coe�cients � (t) and � (t) are rd continuous and real valued functions
on [0; 1 )J, � (t) is positive and delta di�erentiable with � (t) � t continuous, p 2 C(G �
[t0; 1 )J; R).

We establish su�cient conditions for the oscillation of ( 1.1)-(1.2), and of (1.1)-(1.3). We
adapt to time scales the Ricatti transformation used for functional di�erential equations
in [15].

2. Preliminaries

The following de�nitions can be found in [4], where there is detailed introduction to
time scale calculus. A time scaleJ is a nonempty closed subset of the real numbersR. We
will use intervals of the form [t0; 1 )J = [ t0; 1 ) \ J for t0 2 J. For a point t 2 J we have
following de�nitions: The forward jump operator is de�ned as � (t) = inf f s 2 J; s > t g.
The backward jump operator is de�ned as � (t) = sup f s 2 J; s < t g. The graininess
is de�ned as � (t) = � (t) � t. A point t 2 J is said to be right-dense if � (t) = t, and
right-scattered if � (t) > t .

A function g : J ! R is said to be rd continuous if it is continuous at each right dense
point and there exists a �nite left limit of g at all left dense points.

To de�ne derivatives, we introduce

J� =

(
Jn(� (supJ); supJ) if supJ < 1
J if supJ = 1 :

At t 2 J� , the (delta) derivative of a function with respect to t is the numberg� (t) = g� t (t)
(provided it exists) with the following property: For each � > 0 there exists a � positive,
possibly depending ont, such that

�
� � g(� (t)) � g(s)

�
� g� (t)

�
� (t) � s

� �
� � � j� (t) � sj (2.1)

for all s 2 (t � �; t + � ) \ J. A function g : J ! R is said to be regressive provided
1 + � (t)g(t) 6= 0 for each t 2 Jk . Let W be the set of functions that are rd continuous and
regressive. Also we de�neW+ = f g 2 W : 1 + � (t)g(t) > 0; t 2 Jg.

For  2 W and s; t 2 J, the generalized exponential function is de�ned by

e (t; s) = exp
� Z t

s
� � (� ) ( (� ))� �

�
; � � (z) =

(
1
� log(1 + �z ); � 6= 0 ;

z � = 0 :

Then e (t; s) is a nonzero real valued function, and is the unique solution of the IVP

v� (t) =  (t)v(t); v(t0) = 1 on J :

De�nition 2.1 ([11]). Let f : T1 � T2 � : : : � Tn ! R be a function and let t =
(t1; t2; : : : ; t i ; : : : ; tn ) 2 Tk . Then de�ne f � i (t ) to be the number (provided it exists)
with the property that given any � > 0, there exists a neighborhoodU of t i with U =
(t i � �; t i + � ) \ T i for � > 0 such that
�
�
�[f (t1; : : : � (t i ); : : : tn ) � f (t1; : : : s; : : : tn )] � f � i (t )[� (t i ) � s]

�
�
� � � j� i (t) � sj for all s 2 U:

f � i is called the partial delta derivative of f at t with respect to the variable t i .
























































































































































