ON SOME INEQUALITIES OF SIMPSON’S TYPE VIA h–CONVEX FUNCTIONS

MEVLÜT TUNÇ *, ÇETİN YILDIZ† and ALPER EKİNCİ‡

Received 06 : 06 : 2012 : Accepted 1 : 10 : 2012

Abstract

In this paper, we prove some new inequalities of Simpson’s type for functions whose derivatives of absolute values are h–convex and h–concave functions. Some new estimations are obtained. Also we give some sophisticated results for some different kinds of convex functions.

Keywords: h–convex and h–concave functions, Simpson’s Inequality, Hölder Inequality.

2000 AMS Classification: 26D15, 26D10

1. Introduction

The following inequality is well known in the literature as Simpson’s inequality:

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{3} \left[\frac{f(a) + f(b)}{2} + 2f\left(\frac{a + b}{2}\right) \right] \leq \frac{1}{2880} \|f^{(4)}\|_{\infty} (b - a)^{4},$$

where the mapping $f : [a, b] \to \mathbb{R}$ is assumed to be four times continuously differentiable on the interval and $f^{(4)}$ to be bounded on (a, b), that is,

$$\|f^{(4)}\|_{\infty} = \sup_{t \in (a, b)} |f^{(4)}(t)| < \infty.$$

For some results which generalize, improve and extend the inequality (1.1) see the papers [1]–[3].

*Kilis 7 Aralık University, Faculty of Science and Arts, Department of Mathematics, 79000, Kilis, Turkey. E-Mail: mevluttunc@kilis.edu.tr
†Corresponding author.
‡Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Erzurum, Turkey. E-Mail: yildizc@atauni.edu.tr
§Ağrı İbrahim Çeçen University, Faculty of Science and Letters, Department of Mathematics, 04100, Ağrı, Turkey. E-Mail: alperekinci@hotmail.com