GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS IN RIGHT IDEALS OF PRIME RINGS

E. Albaš N. Argaç V. De Filippis and Ç. Demir

Received 09:06:2011 : Accepted 18:12:2012

Abstract

Let R be a prime ring, $f(x_1,\ldots,x_n)$ a multilinear polynomial over C in n noncommuting indeterminates, I a nonzero right ideal of R, and $F : R \to R$ be a nonzero generalized skew derivation of R.

Suppose that $F(f(r_1,\ldots,r_n))f(r_1,\ldots,r_n) \in C$, for all $r_1,\ldots,r_n \in I$. If $f(x_1,\ldots,x_n)$ is not central valued on R, then either $\text{char}(R) = 2$ and R satisfies s_4 or one of the following holds:

(i) $f(x_1,\ldots,x_n)x_{n+1}$ is an identity for I;

(ii) $F(I)I = (0)$;

(iii) $[f(x_1,\ldots,x_n),x_{n+1}]x_{n+2}$ is an identity for I, there exist $b,c,q \in Q$ with q an invertible element such that $F(x) = bx - qxq^{-1}c$ for all $x \in R$, and $q^{-1}cI \subseteq I$. Moreover, in this case either $(b-c)I = (0)$ or $b-c \in C$ and $f(x_1,\ldots,x_n)^2$ is central valued on R.

Keywords: Identity, generalized skew derivation, automorphism, (semi-)prime ring.

2000 AMS Classification: 16W25, 16N60.
1. Introduction.

Throughout this paper, unless specially stated, K denotes a commutative ring with unit, R is always a prime K-algebra with center $Z(R)$, right Martindale quotient ring Q and extended centroid C. The definition, axiomatic formulations and properties of this quotient ring can be found in [2] (Chapter 2).

Many results in literature indicate how the global structure of a ring R is often tightly connected to the behaviour of additive mappings defined on R. A well known result of Posner [32] states that if d is a derivation of R such that $[d(x), x] \in Z(R)$, for any $x \in R$, then either $d = 0$ or R is commutative. Later in [3], Bresar proved that if d and δ are derivations of R such that $d(x)x - x\delta(x) \in Z(R)$, for all $x \in R$, then either $d = \delta = 0$ or R is commutative. In [29], Lee and Wong extended Bresar’s result to the Lie case. They proved that if $d(x)x - x\delta(x) \in Z(R)$, for all x in some non-central Lie ideal L of R then either $d = \delta = 0$ or R satisfies s_4, the standard identity of degree 4.

Recently in [25], Lee and Zhou considered the case when the derivations d and δ are replaced respectively by the generalized derivations H and G, and proved that if $R \neq M_2(GF(2))$, H,G are two generalized derivations of R, and m,n are two fixed positive integers, then $H(x^m)x^n = x^mG(x^n)$ for all $x \in R$ if and only if the following two conditions hold: (1) There exists $w \in Q$ such that $H(x) = xw$ and $G(x) = wx$ for all $x \in R$; (2) either $w \in C$, or x^m and x^n are C-dependent for all $x \in R$.

Moreover in this last case a complete description of H and G is given.

Finally, as a partial extension of the above results to the case of derivations and generalized derivations acting on multilinear polynomials, we have the following:

1.1. Fact. (Theorem 2 in [22]) Let R be a prime ring, $f(x_1, \ldots, x_n)$ a multilinear polynomial over C in n noncommuting indeterminates, and $d : R \rightarrow R$ a nonzero derivation of R. If $d(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) \in C$, for all $r_1, \ldots, r_n \in R$ and $f(x_1, \ldots, x_n)$ is not central valued on RC, then $\text{char}(R) = 2$ and R satisfies s_4.

1.2. Fact. (Lemma 3 in [1]) Let R be a prime ring, $f(x_1, \ldots, x_n)$ a noncentral multilinear polynomial over C in n noncommuting indeterminates, and $G : R \rightarrow R$ a nonzero generalized derivation of R. If $G(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) \in C$, for all $r_1, \ldots, r_n \in R$, then either $\text{char}(R) = 2$ and R satisfies s_4 or there exists $b \in C$ such that $G(x) = bx$ for all $x \in R$ and $f(x_1, \ldots, x_n)^2$ is central valued on R.

These facts in a prime K-algebra are natural tests which evidence that, if d is a derivation of R and G is a generalized derivation of R, then the sets $\{d(x)x \mid x \in S\}$ and $\{G(x)x \mid x \in S\}$ are rather large in R, where S is either a non-central Lie ideal of R, or the set of all the evaluations of a non-central multilinear polynomial over K.

In this paper we will continue the study of the set

$$ \{F(f(x_1, \ldots, x_n))f(x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in R\} $$

for a generalized skew derivation F of R instead of a generalized derivation, and for a multilinear polynomial $f(x_1, \ldots, x_n)$ in n noncommuting variables over C. For the sake of clearness and completeness we now recall the definition of a generalized skew derivation of R. Let R be an associative ring and α be an automorphism of R. An additive mapping $d : R \rightarrow R$ is called a skew derivation of R if

$$ d(xy) = d(x)y + \alpha(x)d(y) $$

for all $x, y \in R$. The automorphism α is called an associated automorphism of d. An additive mapping $F : R \rightarrow R$ is said to be a generalized skew derivation of R if there
exists a skew derivation d of R with associated automorphism α such that
$$F(xy) = F(x)y + \alpha(x)d(y)$$
for all $x, y \in R$, and d is said to be an associated skew derivation of F and α is called an associated automorphism of F. For fixed elements a and b of R, the mapping $F : R \to R$ defined as $F(x) = ax - \sigma(x)b$ for all $x \in R$ is a generalized skew derivation of R. A generalized skew derivation of this form is called an inner generalized skew derivation. The definition of generalized skew derivations is a unified notion of skew derivation and generalized derivation, which have been investigated by many researchers from various viewpoints (see \cite{S, G, L, K}).

The main result of this paper is the following:

Theorem. Let R be a prime ring, $f(x_1, \ldots, x_n)$ a multilinear polynomial over C in n noncommuting indeterminates, I a nonzero right ideal of R, and $F : R \to R$ a nonzero generalized skew derivation of R.

Suppose that $F(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) \in C$, for all $r_1, \ldots, r_n \in I$. If the polynomial $f(x_1, \ldots, x_n)$ is not central valued on R, then either $\text{char}(R) = 2$ and F satisfies s_4 or one of the following holds:

(i) $f(x_1, \ldots, x_n)x_{n+1}$ is an identity for I;

(ii) $F(I)I = (0)$;

(iii) $[f(x_1, \ldots, x_n), x_{n+1}][x_{n+2}]$ is an identity for I, there exist $b, c, q \in Q$ with q an invertible element such that $F(x) = bx - qxq^{-1}c$ for all $x \in R$, and $q^{-1}cI \subseteq I$.

Moreover, in this case either $(b - c)I = (0)$ or $b - c \in C$ and $f(x_1, \ldots, x_n)^2$ is central valued on R.

It is well known that automorphisms, derivations and skew derivations of R can be extended to Q. Chang in \cite{S} extended the definition of a generalized skew derivation to the right Martindale quotient ring Q of R as follows: by a (right) generalized skew derivation we mean an additive mapping $F : Q \to Q$ such that $F(xy) = F(x)y + \alpha(x)d(y)$ for all $x, y \in Q$, where d is a skew derivation of R and α is an automorphism of R. Moreover, there exists $F(1) = a \in Q$ such that $F(x) = ax + d(x)$ for all $x \in R$ (Lemma 2 in \cite{S}).

2. X-inner Generalized Skew Derivations on Prime Rings.

In this section we consider the case when F is an X-inner generalized skew derivation induced by the elements $b, c \in R$, that is, $F(x) = bx - \alpha(x)c$ for all $x \in R$, where $\alpha \in \text{Aut}(R)$ is the associated automorphism of F. Here $\text{Aut}(R)$ denotes the group of automorphisms of R.

At the outset, we will study the case when $R = M_m(K)$ is the algebra of $m \times m$ matrices over a field K. Notice that the set $f(R) = \{f(r_1, \ldots, r_n) : r_1, \ldots, r_n \in R\}$ is invariant under the action of all inner automorphisms of R. Hence if we denote $r = (r_1, \ldots, r_n) \in R \times \ldots \times R = R^n$, then for any inner automorphism φ of $M_m(K)$, we have that $\varphi = (\varphi(r_1), \ldots, \varphi(r_n)) \in R^n$ and $\varphi(f(r)) = f(\varphi(r))$.

Let us recall some results from \cite{P} and \cite{T}. Let T be a ring with 1 and let $e_{ij} \in M_m(T)$ be the matrix unit having 1 in the (i, j)-entry and zero elsewhere. For a sequence $u = (A_1, \ldots, A_n)$ in $M_m(T)$ the value of u is defined to be the product $|u| = A_1A_2 \cdots A_n$ and u is nonvanishing if $|u| \neq 0$. For a permutation σ of $\{1, 2, \cdots, n\}$ we write $u^\sigma = (A_{\sigma(1)}, \ldots, A_{\sigma(n)})$. We call u simple if it is of the form $u = (a_1e_{i_1j_1}, \ldots, a_ne_{i_nj_n})$, where $a_i \in T$. A simple sequence u is called even if for some σ, $|u^\sigma| = be_{i_1} \neq 0$, and odd if for some σ, $|u^\sigma| = be_{ij} \neq 0$, where $i \neq j$ and $b \in T$. We have:
2.1. Fact. (Lemma in [23]) Let \(T \) be a \(K \)-algebra with 1 and let \(R = M_m(T) \), \(m \geq 2 \). Suppose that \(f(x_1, \ldots , x_n) \) is a multilinear polynomial over \(K \) such that \(h(u) = 0 \) for all odd simple sequences \(u \). Then \(h(x_1, \ldots , x_n) \) is central valued on \(R \).

2.2. Fact. (Lemma 2 in [30]) Let \(T \) be a \(K \)-algebra with 1 and let \(R = M_m(T) \), \(m \geq 2 \). Suppose that \(h(x_1, \ldots , x_n) \) is a multilinear polynomial over \(K \). Let \(u = (A_1, \ldots , A_n) \) be a simple sequence from \(R \).

1. If \(u \) is even, then \(h(u) \) is a diagonal matrix.
2. If \(u \) is odd, then \(h(u) = ae_{pq} \) for some \(a \in T \) and \(p \neq q \).

2.3. Fact. Suppose that \(f(x_1, \ldots , x_n) \) is a multilinear polynomial over a field \(K \) not central valued on \(R = M_m(K) \). Then by Fact 2.1 there exists an odd simple sequence \(r = (r_1, \ldots , r_n) \) from \(R \) such that \(f(r) = f(r_1, \ldots , r_n) \neq 0 \). By Fact 2.2 \(f(r) = \beta e_{pq} \), where \(0 \neq \beta \in K \) and \(p \neq q \). Since \(f(x_1, \ldots , x_n) \) is a multilinear polynomial and \(K \) is a field, we may assume that \(\beta = 1 \). Now, for distinct \(i \) and \(j \), let \(\sigma \in S_n \) be such that \(\sigma(p) = i \) and \(\sigma(q) = j \), and let \(\psi \) be the automorphism of \(R \) defined by \(\psi(\sum_{s,t} \xi_{st} e_{st}) = \sum_{s,t} \xi_{st} e_{\sigma(s)\sigma(t)} \). Then \(f(\psi(r)) = f(\psi(r_1), \ldots , \psi(r_n)) = \psi(f(r)) = \beta e_{ij} = e_{ij} \).

In all that follows we always assume that \(f(x_1, \ldots , x_n) \) is not central valued on \(R \).

2.4. Lemma. Let \(R = M_m(K) \) be the algebra of \(m \times m \) matrices over the field \(K \) and \(m \geq 2 \), \(f(x_1, \ldots , x_n) \) a multilinear polynomial over \(K \), which is not central valued on \(R \).

If there exist \(b, c, q \in R \) with \(q \) an invertible matrix such that

\[
\left(bf(r_1, \ldots , r_n) - qf(r_1, \ldots , r_n)q^{-1}c \right) f(r_1, \ldots , r_n) \in Z(R)
\]

for all \(r_1, \ldots , r_n \in R \), then either \(\text{char}(R) = 2 \) and \(m = 2 \), or \(q^{-1}c, b - c \in Z(R) \) and \(f(x_1, \ldots , x_n) \) is central valued on \(R \), provided that \(b \neq c \).

Proof. If \(q^{-1}c \in Z(R) \) then the conclusion follows from Fact 1.2. Thus we may assume that \(q^{-1}c \) is not a scalar matrix and proceed to get a contradiction. Say \(q = \sum_{hl} q_{hl} e_{hl} \) and \(q^{-1}c = \sum_{hl} p_{hl} e_{hl} \), for \(q_{hl}, p_{hl} \in K \). By Fact 2.3 \(e_{ij} \in f(R) \) for all \(i \neq j \), then for any \(i \neq j \)

\[
X = (be_{ij} - qe_{ij}q^{-1}c)e_{ij} \in Z(R).
\]

By \(X \), we have \(qe_{ij}q^{-1}ce_{ij} = q_{ij}e_{ij} \in Z(R) \). Then for any \(1 \leq k \leq m \) \([q_{ij}e_{ij}, e_{ik}] = 0 \), that is \(q_{ij}p_{ki} \neq 0 \) for some \(k \), we get \(p_{ji} = 0 \) for all \(i \neq j \). Hence \(q^{-1}c \) is a diagonal matrix in \(R \). Let \(i \neq j \) and \(\phi(x) = (1 + e_{ij})(1 - e_{ij}) \) be an automorphism of \(R \). It is well known that \(\phi(f(r_i)) \in f(R) \), then

\[
\left(\phi(b)u - \phi(q)u\phi(q^{-1}c) \right) u \in Z(R)
\]

for all \(u \in f(R) \). By the above argument, \(\phi(q^{-1}c) \) is a diagonal matrix, that is the \((j, i)\)-entry of \(\phi(q^{-1}c) \) is zero. By calculations it follows \(p_{ji} = p_{ij} \), and we get the contradiction that \(q^{-1}c \) is central in \(R \).

2.5. Lemma. Let \(R \) be a prime ring, \(f(x_1, \ldots , x_n) \) be a non-central multilinear polynomial over \(C \). If there exist \(b, c, q \in R \) with \(q \) an invertible element such that

\[
(bf(r_1, \ldots , r_n) - qf(r_1, \ldots , r_n)q^{-1}c)f(r_1, \ldots , r_n) \in C
\]

for all \(r_1, \ldots , r_n \in R \), then either \(\text{char}(R) = 2 \) and \(R \) satisfies \(s_4 \), or \(q^{-1}c, b - c \in Z(R) \) and \(f(x_1, \ldots , x_n)^2 \) is central valued on \(R \), provided that \(b \neq c \).
Proof. Consider the generalized polynomial
\[\Phi(x_1, \ldots, x_{n+1}) = \left(b f(x_1, \ldots, x_n) - q f(x_1, \ldots, x_n) q^{-1} c \right) f(x_1, \ldots, x_n, x_{n+1}) \]
which is a generalized polynomial identity for \(R \). If \(\{1, q^{-1}c\} \) is linearly \(C \)-dependent, then \(q^{-1}c \in C \). In this case \(R \) satisfies
\[\Phi(x_1, \ldots, x_{n+1}) = \left[(b - c) f(x_1, \ldots, x_n) \right] f(x_1, \ldots, x_n, x_{n+1}) \]
and we are done by Fact 2.2.

Hence we here assume that \(\{1, q^{-1}c\} \) is linearly \(C \)-independent. In this case \(\Phi(x_1, \ldots, x_{n+1}) \) is a non-trivial generalized polynomial identity for \(R \) and by [12] \(\Phi(x_1, \ldots, x_{n+1}) \) is a non-trivial generalized polynomial identity for \(Q \). By Martindale’s theorem in [31], \(Q \) is a primitive ring having nonzero socle with the field \(C \) as its associated division ring. By [20] (p. 75) \(Q \) is isomorphic to a dense subring of the ring of linear transformations of a vector space \(V \) over \(C \), containing nonzero linear transformations of finite rank. Assume first that \(\dim V = k \) a finite integer. Then \(Q \cong M_k(C) \) and the conclusion follows from Lemma 2.4. Therefore we may assume that \(\dim V = \infty \). As in Lemma 2 in [33], the set \(f(R) = \{ f(r_1, \ldots, r_n) : r_i \in R \} \) is dense in \(R \) and so from \(\Phi(r_1, \ldots, r_{n+1}) = 0 \) for all \(r_1, \ldots, r_{n+1} \in R \), we have that \(Q \) satisfies the generalized identity
\[(bx_1 - qx_1q^{-1}c)x_1x_2 \]
In particular for \(x_1 = 1, [b - c, x_2] \) is an identity for \(Q \), that is \(b - c \in C \), say \(b = c + \lambda \) for some \(\lambda \in C \). Thus \(Q \) satisfies
\[((c + \lambda)x_1 - qx_1q^{-1}c)x_1x_2 \]
and by replacing \(x_1 \) with \(y_1 + t_1 \) we have that
\[\left[\left(c + \lambda \right)y_1 - qx_1q^{-1}c \right] t_1, x_2 + \left[\left(c + \lambda \right)t_1 - qt_1q^{-1}c \right] y_1, x_2 \]
is an identity for \(Q \). Once again for \(y_1 = 1 \) it follows that \(Q \) satisfies
\[\lambda t_1 + (c + \lambda)t_1 - qt_1q^{-1}c, x_2 \]
and for \(x_2 = t_1 \)
\[ct_1 - qt_1q^{-1}c, t_1 \]
By Lemma 3.2 in [17] (or [13] Theorem 1) and since \(R \) cannot satisfy any polynomial identity \((\dim V = \infty) \), it follows the contradiction \(q^{-1}c \in C \).

2.6. Proposition. Let \(R \) be a prime ring, \(f(x_1, \ldots, x_n) \) a non-central multilinear polynomial over \(C \) in \(n \) non-commuting variables, \(b, c \in R \) and \(\alpha \in \text{Aut}(R) \) such that \(F(x) = bx - \alpha(x)c \) for all \(x \in R \). If \(F(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) \in C \), for all \(r_1, \ldots, r_n \in R \), and \(F \) is nonzero on \(R \), then either \(\text{char}(R) = 2 \) and \(R \) satisfies \(s_4 \), or \(f(x_1, \ldots, x_n)^2 \) is central valued on \(R \) and there exists \(\gamma \in C \) such that \(F(x) = \gamma x \), for all \(x \in R \). When this last case occurs, we have:

- (i) if \(\alpha \) is X-outer then \(\gamma = b \) and \(c = 0 \);
- (ii) if \(\alpha(x) = qxq^{-1} \) for all \(x \in R \) and for some invertible element \(q \in Q \), then \(\gamma = b - c \) and \(q^{-1}c \in C \).

Proof. In case \(\alpha \) is an X-inner automorphism of \(R \), there exists an invertible element \(q \in Q \) such that \(\alpha(x) = qxq^{-1} \) for all \(x \in R \) and the conclusion follows from Lemma 2.5. So we may assume here that \(\alpha \) is X-outer. Since by [14] \(R \) and \(Q \) satisfy the same generalized identities with automorphisms, then
\[\Phi(x_1, \ldots, x_{n+1}) = \left[(bf(x_1, \ldots, x_n) - \alpha(f(x_1, \ldots, x_n))c) f(x_1, \ldots, x_n, x_{n+1}) \right] \]
is satisfied by Q, moreover Q is a centrally closed prime C-algebra. Note that if $c = 0$ we are done by Fact 1.2. Thus we may assume $c \neq 0$. In this case, by [13] (main Theorem), $\Phi(x_1, \ldots, x_{n+1})$ is a non-trivial generalized identity for R and for Q. By Theorem 1 in [21], RC has non-zero socle and Q is primitive. Moreover, since α is an outer automorphism and any $(x_i)^\gamma$-word degree in $\Phi(x_1, \ldots, x_n)$ is equal to 1, then by Theorem 3 in [13], Q satisfies the identity
\[
\left[(bf(x_1, \ldots, x_n) - f^\alpha(y_1, \ldots, y_n)c)f(x_1, \ldots, x_n), x_{n+1}\right],
\]
where $f^\alpha(X_1, \ldots, X_n)$ is the polynomial obtained from f by replacing each coefficient γ of f with $\alpha(\gamma)$. By Fact 1.2 we conclude that either $\text{char}(R) = 2$ and R satisfies s_4 or $b, c \in C$ and $f(x_1, \ldots, x_n)^{s_4}$ is central valued on R. Moreover, in this last case we also have that Q satisfies
\[
c[f(y_1, \ldots, y_n)f(x_1, \ldots, x_n), x_{n+1}] = 0.
\]
Since $c \neq 0$ we have $f(y_1, \ldots, y_n)f(x_1, \ldots, x_n, x_{n+1})$ is a polynomial identity for Q. Thus there exists a suitable field K such that Q and the $l \times l$ matrix ring $M_l(K)$ satisfy the same polynomial identities by Lemma 1 in [22]. In particular, $M_l(K)$ satisfies $[f(y_1, \ldots, y_n)f(x_1, \ldots, x_n), x_{n+1}]$. Hence, since $f(x_1, \ldots, x_n)$ is not central valued on $M_l(K)$ (and hence $l \geq 2$), by Fact 2.3 we have that for all $i \neq j$ there exist $r_1, \ldots, r_n, s_1, \ldots, s_n \in M_l(K)$ such that $f(r_1, \ldots, r_n) = e_{ij}$ and $f(s_1, \ldots, s_n) = e_{ij}$. As a consequence we get $0 = [e_{ij}, x_{n+1}] = [e_{ii}, x_{n+1}]$, which is a contradiction for a suitable choice of $x_{n+1} \in M_l(K)$ (for example $x_{n+1} = e_{ij}$).

2.7. Fact. (Theorem 1 in [15]) Let R be a prime ring, D be an X-outer skew derivation of R and α be an X-outer automorphism of R. If $\Phi(x_1, D(x_2), \alpha(x_3))$ is a generalized polynomial identity for R, then R also satisfies the generalized polynomial identity $\Phi(x_1, y_2, z_3)$, where x_1, y_2, and z_3 are distinct indeterminates.

We close this section by collecting the results we obtained so far in the following

2.8. Proposition. Let R be a prime ring, $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over C in n non-commuting variables, $F : R \to R$ a nonzero X-inner generalized skew derivation of R.

If $F(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) \in C$, for all $r_1, \ldots, r_n \in R$, then either $\text{char}(R) = 2$ and R satisfies s_4, or $f(x_1, \ldots, x_n)^{s_4}$ is central valued on R and there exists $\gamma \in C$ such that $F(x) = \gamma x$, for all $x \in R$.

Proof. We can write $F(x) = bx + d(x)$ for all $x \in R$ where $b \in Q$ and d is a skew derivation of R (see [8]). We denote $f(x_1, \ldots, x_n) = \sum_{\sigma \in S_n} \gamma(\sigma)x_{\sigma(1)} \cdots x_{\sigma(n)}$ with $\gamma(\sigma) \in C$. By Theorem 2 in [13] Q and R satisfy the same generalized polynomial identities with a single skew derivation, then Q satisfies
\[
(2.1) \quad \left[(bf(x_1, \ldots, x_n) + d(f(x_1, \ldots, x_n)))f(x_1, \ldots, x_n), x_{n+1}\right].
\]
Since F is X-inner then d is X-inner, that is there exist $c \in Q$ and $\alpha \in \text{Aut}(Q)$ such that $d(x) = cx - \alpha(x)c$, for all $x \in R$. Hence $F(x) = (b + c)x - \alpha(x)c$ and we conclude by Proposition 2.6.

2.9. Corollary. Let R be a prime ring, $f(x_1, \ldots, x_n)$ a non-vanishing multilinear polynomial over C in n non-commuting variables, $F : R \to R$ a non-zero X-inner generalized skew derivation of R. If $F(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) = 0$, for all $r_1, \ldots, r_n \in R$, then $\text{char}(R) = 2$ and R satisfies s_4.

74 E. Albaş, N. Argaç, V. De Filippis and Ç. Demir

We premit the following:

3.1. Fact. (Main Theorem in [1]) Let \(R \) be a prime ring, \(I \) a nonzero right ideal of \(R \), \(f(x_1, \ldots, x_n) \) a multilinear polynomial over \(C \) in \(n \) non-commuting indeterminates, which is not an identity for \(R \), and \(g : R \to R \) a nonzero generalized derivation of \(R \) with the associated derivation \(d : R \to R \), that is \(g(x) = ax + d(x) \), for all \(x \in R \) and a fixed \(a \in Q \).

Suppose that \(g(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) \in C \), for all \(r_1, \ldots, r_n \in I \). Then either \(\text{char}(R) = 2 \) and \(R \) satisfies \(s_4 \) or \(f(x_1, \ldots, x_n)x_{n+1} \) is an identity for \(I \), or there exist \(b, c \in Q \) such that \(g(x) = bx + xc \) for all \(x \in R \) and one of the following holds:

(i) \(b, c \in C \) and \(f(x_1, \ldots, x_n)^2 \) is central valued on \(R \);
(ii) there exists \(\lambda \in C \) such that \(b = \lambda - c \) and \(f(x_1, \ldots, x_n) \) is central valued on \(R \);
(iii) \((b + c)I = (0) \) and \(I \) satisfies the identity \([f(x_1, \ldots, x_n), x_{n+1}]x_{n+2} \);
(iv) \((b + c)I = (0) \) and there exists \(\gamma \in C \) such that \((c - \gamma)I = (0) \).

3.2. Fact. (Theorem 1 in [1]) Under the same situation as in above Fact, we notice that in case \(g(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) = 0 \), for all \(r_1, \ldots, r_n \in I \), the conclusions (i) and (ii) cannot occur. Hence we have that either \(\text{char}(R) = 2 \) and \(R \) satisfies \(s_4 \) or \(f(x_1, \ldots, x_n)x_{n+1} \) is an identity for \(I \), or there exist \(b, c \in Q \) such that \(g(x) = bx + xc \) for all \(x \in R \) and one of the following holds:

(i) \((b + c)I = (0) \) and \(I \) satisfies the identity \([f(x_1, \ldots, x_n), x_{n+1}]x_{n+2} \);
(ii) \((b + c)I = (0) \) and there exists \(\gamma \in C \) such that \((c - \gamma)I = (0) \).

3.3. Proposition. Let \(R \) be a prime ring, \(f(x_1, \ldots, x_n) \) a non-central multilinear polynomial over \(C \) in \(n \) non-commuting indeterminates, \(I \) a nonzero right ideal of \(R \), \(F : R \to R \) an \(X \)-outer generalized skew derivation of \(R \). If

\[
F(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) \in C,
\]

for all \(r_1, \ldots, r_n \in I \), then either \(\text{char}(R) = 2 \) and \(R \) satisfies \(s_4 \) or \(f(x_1, \ldots, x_n)x_{n+1} \) is an identity for \(I \).

Proof. As above we write \(F(x) = bx + d(x) \) for all \(x \in R \), \(b \in Q \) and \(d \) is an \(X \)-outer skew derivation of \(R \). Let \(\alpha \in \text{Aut}(Q) \) be the automorphism which is associated with \(d \). Notice that in case \(\alpha \) is the identity map on \(R \), then \(d \) is a usual derivation of \(R \) and so \(F \) is a generalized derivation of \(R \). Therefore by Fact 3.1 we obtain the required conclusions. Hence in what follows we always assume that \(\alpha \neq 1 \in \text{Aut}(R) \).

We denote by \(f^d(x_1, \ldots, x_n) \) the polynomial obtained from \(f(x_1, \ldots, x_n) \) by replacing each coefficient \(\gamma_\sigma \) with \(d(\gamma_\sigma) \). Notice that

\[
d(\gamma_\sigma x_{\sigma(1)} \cdots x_{\sigma(n)}) = d(\gamma_\sigma)x_{\sigma(1)} \cdots x_{\sigma(n)}
+ \alpha(\gamma_\sigma) \sum_{j=0}^{n-1} \alpha(x_{\sigma(1)} \cdots x_{\sigma(j)})d(x_{\sigma(j+1)}x_{\sigma(j+2)} \cdots x_{\sigma(n)})
\]

so that

\[
d(f(x_1, \ldots, x_n)) = f^d(x_1, \ldots, x_n)
+ \sum_{\sigma \in S_n} \alpha(\gamma_\sigma) \sum_{j=0}^{n-1} \alpha(x_{\sigma(1)} \cdots x_{\sigma(j)})d(x_{\sigma(j+1)}x_{\sigma(j+2)} \cdots x_{\sigma(n)}).\]
Since IQ satisfies (3.1), then for all $0 \neq u \in I$, Q satisfies
\[
\left[bf(uX_1, \ldots, uX_n) + f^d(uX_1, \ldots, uX_n) \right] f(uX_1, \ldots, uX_n, x_{n+1})
+ \left[\sum_{\sigma \in S_n} \alpha(\gamma_{\sigma}) \sum_{j=0}^{n-1} \alpha(uX_{\sigma(1)} \ldots uX_{\sigma(j)}) d(uX_{\sigma(j+1)} uX_{\sigma(j+2)} \ldots uX_{\sigma(n)}) \right] f(uX_1, \ldots, uX_n, x_{n+1}).
\]
By Theorem 1 in [15], Q satisfies
\[
\left[bf(uX_1, \ldots, uX_n) + f^d(uX_1, \ldots, uX_n) \right] f(uX_1, \ldots, uX_n, x_{n+1})
+ \left[\sum_{\sigma \in S_n} \alpha(\gamma_{\sigma}) \sum_{j=0}^{n-1} \alpha(uX_{\sigma(1)} \ldots uX_{\sigma(j)}) d(u) uX_{\sigma(j+1)} uX_{\sigma(j+2)} \ldots uX_{\sigma(n)}) \right] f(uX_1, \ldots, uX_n, x_{n+1})
+ \left[\sum_{\sigma \in S_n} \alpha(\gamma_{\sigma}) \sum_{j=0}^{n-1} \alpha(uX_{\sigma(1)} \ldots uX_{\sigma(j)}) \alpha(u) y_{\sigma(j+1)} uX_{\sigma(j+2)} \ldots uX_{\sigma(n)}) \right] f(uX_1, \ldots, uX_n, x_{n+1}).
\]
In particular Q satisfies
\[
(3.2)
\left[\sum_{\sigma \in S_n} \alpha(\gamma_{\sigma}) \sum_{j=0}^{n-1} \alpha(uX_{\sigma(1)} \ldots uX_{\sigma(j)}) \alpha(u) y_{\sigma(j+1)} uX_{\sigma(j+2)} \ldots uX_{\sigma(n)}) \right] f(uX_1, \ldots, uX_n, x_{n+1}).
\]
Here we suppose that either $char(R) \neq 2$ or R does not satisfy s_4, moreover $f(x_1, \ldots, x_n)x_{n+1}$ is not an identity for I, if not we are done. Hence suppose there exist $a_1, \ldots, a_{n+1} \in I$ such that $f(a_1, \ldots, a_n)a_{n+1} \neq 0$. We proceed to get a number of contradictions.

Since $0 \neq \alpha(u)$ is a fixed element of Q, we notice that (3.2) is a non-trivial generalized polynomial identity for Q, then Q has nonzero socle H which satisfies the same generalized polynomial identities of Q (see [12]). In order to prove our result, we may replace Q by H, and by Lemma 1 in [19], we may assume that Q is a regular ring. Thus there exists $0 \neq e = e^2 \in IQ$ such that $\sum_{i=1}^{n+1} a_i Q = eQ$, and $a_i = ea_i$ for each $i = 1, \ldots, n+1$. Notice that eQ satisfies the same generalized identities with skew derivations and automorphisms of I. So that we may assume $e \neq 1$, if not $eQ = Q$ and the conclusion follows from Proposition 2.6.

Assume that α is X-outer. Thus, by Fact 2.7 and (3.2), Q satisfies
\[
(3.3)
\left[\sum_{\sigma \in S_n} \alpha(\gamma_{\sigma}) \sum_{j=0}^{n-1} \alpha(e) t_{\sigma(1)} \cdots \alpha(e) t_{\sigma(j)} \alpha(e) y_{\sigma(j+1)} eX_{\sigma(j+2)} \cdots eX_{\sigma(n)}) \right] f(ex_1, \ldots, ex_n, x_{n+1})
\]
and in particular
\[
(3.4)
\left[\sum_{\sigma \in S_n} \alpha(\gamma_{\sigma}) \alpha(e) y_{\sigma(1)} \cdots \alpha(e) y_{\sigma(n)}) \right] f(ex_1, \ldots, ex_n, x_{n+1}).
\]
We also denote by $f^\alpha(x_1, \ldots, x_n)$ the polynomial obtained from $f(x_1, \ldots, x_n)$ by replacing each coefficient γ_{σ} with $\alpha(\gamma_{\sigma})$. Therefore we may rewrite (3.4) as follows:
\[
(3.5)
\left[f^\alpha(\alpha(e)r_1, \ldots, \alpha(e)r_n) f(es_1, \ldots, es_n), X \right] = 0
\]
for all $r_1, \ldots, r_n, s_1, \ldots, s_n, X \in Q$. Choose in (3.5) $X = Y(1 - \alpha(e))$, then we get
\[
f^\alpha(\alpha(e)r_1, \ldots, \alpha(e)r_n) f(es_1, \ldots, es_n) Y(1 - \alpha(e)) = 0
\]
and by the primeness of Q and since $e \neq 1$, it follows that Q satisfies
\[f^\alpha(\alpha(e)y_1, \ldots, \alpha(e)y_n) f(ex_1, \ldots, ex_n) \]
that is
\[f^\alpha(\alpha(e)Q) f(eQ) = (0), \]
where $\alpha(e)Q$ and eQ are both right ideals of Q and f^α and f are distinct polynomials over C (since $\alpha \neq 1$). In this situation, applying the result in [16] (see the proof of Lemma 3, pp. 181), it follows that either
\[f^\alpha(\alpha(e)r_1, \ldots, \alpha(e)r_n)\alpha(e) = 0 \]
and by the primeness of α and since
\[\alpha \]
By Fact 3.1 it follows that one of the following holds:
\[(3.8) \]
that is
\[0 = \alpha^{-1} f^\alpha(\alpha(e)r_1, \ldots, \alpha(e)r_n)\alpha(e) = f(e\alpha^{-1}(r_1), \ldots, e\alpha^{-1}(r_n))e \]
and since α^{-1} is an automorphism of Q, it follows that $f(es_1, \ldots, es_n)e = 0$, for all $s_1, \ldots, s_n \in Q$, which is again a contradiction.

Finally consider the case when there exists an invertible element $q \in Q$ such that
\[\alpha(x) = qxq^{-1}, \]
for all $x \in Q$. Thus from (3.2) we have that Q satisfies
\[(3.6) \]
\[\left[\sum_{\sigma \in S_n} \alpha(\gamma_{\sigma}) \sum_{j=0}^{n-1} q(e \sigma_{(1)} \cdots e \sigma_{(j)}) e^{-1} y_{\sigma_{(j+1)} \sigma_{(j+2)} \cdots e \sigma_{(n)}} f(ex_1, \ldots, ex_n), x_{n+1} \right] \]
Since $\alpha(\gamma_{\sigma}) = \gamma_{\sigma}$ and by replacing $y_{\sigma(i)}$ with $q e \sigma_{(i)}$, for all $\sigma \in S_n$ and for all $i = 1, \ldots, n$, it follows that Q satisfies
\[(3.7) \]
\[\left[\sum_{\sigma \in S_n} \gamma_{\sigma} q e \sigma_{(1)} \cdots e \sigma_{(j)} e \sigma_{(j+1)} \cdots e \sigma_{(n)} f(ex_1, \ldots, ex_n), x_{n+1} \right] \]
that is
\[(3.8) \]
\[\left[q f(ex_1, \ldots, ex_n) f(ex_1, \ldots, ex_n), x_{n+1} \right]. \]
By Fact [3.4] it follows that one of the following holds:
1. $\text{char}(Q) = 2$ and Q satisfies s_4;
2. $f(x_1, \ldots, x_n)x_{n+1}$ is an identity for eQ;
3. $q \in C$;
4. $qeQ = (0)$.
Since in any case we get a contradiction, we are done. \[\square \]

3.4. Lemma. Let R be a prime ring, $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over C in n non-commuting indeterminates, I a nonzero right ideal of R, $b, c \in Q$ and
\[\alpha \in \text{Aut}(R) \]
be an automorphism of R such that $F(x) = bx - \alpha(x)c$, for all $x \in R$. Assume that $F(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) \in C$, for all $r_1, \ldots, r_n \in I$. If R does not satisfy any non-trivial generalized polynomial identity then $F(I)I = (0)$.

Proof. Let u be any nonzero element of I. By the hypothesis R satisfies the following:
\[\left[b(f(ux_1, \ldots, ux_n)) - \alpha(f(ux_1, \ldots, ux_n))c \right] \]
Also here we denote by $f^\alpha(x_1, \ldots, x_n)$ the polynomial obtained from $f(x_1, \ldots, x_n)$ by replacing each coefficient γ_{σ} of $f(x_1, \ldots, x_n)$ with $\alpha(\gamma_{\sigma})$. Thus R satisfies
\[(3.9) \]
\[\left[b(f(ux_1, \ldots, ux_n)) - f^\alpha(\alpha(u)\alpha(x_1), \ldots, \alpha(u)\alpha(x_n))c \right] \]
In case α is X-outer, by Theorem 3 in [14] and (3.9) we have that R satisfies
\[
\left(b f(u x_1, \ldots, u x_n) - f^\alpha(\alpha(u) y_1, \ldots, \alpha(u) y_n) c \right) f(u x_1, \ldots, u x_n), x_{n+1} \right]
\]and in particular R satisfies both
\[(3.10) \quad \left[b f(u x_1, \ldots, u x_n)^2, x_{n+1} \right] \]
and
\[(3.11) \quad \left[f^\alpha(\alpha(u) y_1, \ldots, \alpha(u) y_n) c f(u x_1, \ldots, u x_n), x_{n+1} \right]. \]
Since (3.10) and (3.11) must be trivial generalized polynomial identities for R and in particular R satisfies both
\[(3.13) \quad \left[q f(u x_1, \ldots, u x_n)(\lambda - q^{-1} c) f(u x_1, \ldots, u x_n), x_{n+1} \right]. \]
Once again (3.13) is a trivial identity for R, moreover $q u \neq 0$. This implies that $(\lambda - q^{-1} c) u = 0$ and hence $(\lambda_u - q^{-1} c) u = 0$ for all $u \in I$ and for some $\lambda_u \in C$. Then u and $q^{-1} c u$ are C-dependent for all $u \in I$. By a standard argument we conclude that $(\lambda - q^{-1} c) I = (0)$ for some $\lambda \in C$, and thus $F(I) I = (0)$. \hfill \square

3.5. Lemma. Let R be a prime ring, $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over C in n non-commuting indeterminates, I a nonzero right ideal of R, $b, c \in Q$ and $\alpha \in \text{Aut}(R)$ be an X-outer automorphism of R such that $F(x) = bx - \alpha(x)c$, for all $x \in R$. If $F(f(r_1, \ldots, r_n)) f(r_1, \ldots, r_n) \in C$, for all $r_1, \ldots, r_n \in I$, then either $\text{char}(R) = 2$ and R satisfies S_4 or one of the following holds:

(i) $f(x_1, \ldots, x_n)x_{n+1}$ is an identity for I;
(ii) $F(I) I = (0)$;
(iii) $c I = (0)$, $b \in C$ and $f(x_1, \ldots, x_n)^2$ is central valued on R.

Proof. Firstly we notice that in case $c I = (0)$, then $b f(r_1, \ldots, r_n)^2 \in C$, for all $r_1, \ldots, r_n \in I$. Thus by Fact 3.11 it follows that either $c I = (0)$, $b \in C$ and $f(x_1, \ldots, x_n)^2$ is central valued on R, or $c I = b I = (0)$ that is $F(I) I = (0)$. Hence in the following we assume $c I \neq (0)$. By previous Lemma we may assume that R satisfies some non-trivial generalized polynomial identity. As above let u be any nonzero element of I. By the hypothesis R satisfies the following:

\[
(3.14) \quad \left[b f(u x_1, \ldots, u x_n) - f^\alpha(\alpha(u) \alpha(x_1), \ldots, \alpha(u) \alpha(x_n)) c \right] f(u x_1, \ldots, u x_n), x_{n+1} \right].
\]
Since α is X-outer, by Theorem 3 in [14], R satisfies
\[(3.15) \quad \left[b f(u x_1, \ldots, u x_n) - f^\alpha(\alpha(u) y_1, \ldots, \alpha(u) y_n) c \right] f(u x_1, \ldots, u x_n), x_{n+1} \right]
\]and in particular R as well as Q satisfy the component
\[(3.16) \quad f^\alpha(\alpha(u) y_1, \ldots, \alpha(u) y_n) c f(u x_1, \ldots, u x_n), x_{n+1} \right].
By \(Q \) is a primitive ring having nonzero socle \(H \) with the field \(C \) as its associated division ring. Moreover \(H \) and \(Q \) satisfy the same generalized polynomial identities with automorphisms (Theorem 1 in [14]). Therefore \(H \) satisfies \((3.14)\) and so we may replace \(Q \) by \(H \). Suppose there exist \(a_1, \ldots, a_{n+2} \in I \) such that \(f(a_1, \ldots, a_n)_{a_{n+1}} \neq 0 \) and \(ca_{n+2} \neq 0 \). Since \(Q \) is a regular GPI-ring, there exists an idempotent element \(e \in IQ \) such that \(eQ = \sum_{i=1}^{n+2} a_i Q \) and \(a_i = ea_i \), for any \(i = 1, \ldots, n+2 \). Therefore, by \((3.14)\), \(Q \) satisfies
\[
(3.17) \quad \left[\left(\begin{align*}
bf & \left(\begin{array}{c}
\alpha(v) & \ldots \alpha(v) & \alpha(u) & \ldots \alpha(u) & \alpha(w) & \ldots \alpha(w)
\end{array}\right) - & \left(\begin{array}{c}
f(x_1, \ldots, x_n) - f^a(\alpha(v)\alpha(x_1), \ldots, \alpha(v)\alpha(x_n))c
\end{array}\right) f(x_1, \ldots, x_n, x_{n+1})
\end{align*}\right]
\]
Moreover assume \(e \neq 1 \), if not \(eQ = Q \) and by Proposition \[2.6\] we get \(b \in C \), \(c = 0 \) and \(f(x_1, \ldots, x_n)^2 \) is central valued on \(R \). Since \(\alpha \) is \(X \)-outer, as above by \((3.17)\), \(Q \) satisfies
\[
\left[\left(\begin{align*}
\alpha(v) & \ldots \alpha(v) & \alpha(u) & \ldots \alpha(u) & \alpha(w) & \ldots \alpha(w)
\end{align*}\right) - \left(\begin{array}{c}
f(x_1, \ldots, x_n) - f^a(\alpha(v)\alpha(x_1), \ldots, \alpha(v)\alpha(x_n))c
\end{array}\right) f(x_1, \ldots, x_n, x_{n+1})
\end{align*}\right]
\]
In particular \(Q \) satisfies
\[
\left(\begin{align*}
f^a(\alpha(v)\alpha(x_1), \ldots, \alpha(v)\alpha(x_n))cf(x_1, \ldots, x_n, 1 - \alpha(e))
\end{align*}\right)
\]that is \(Q \) satisfies
\[
f^a(\alpha(v)\alpha(x_1), \ldots, \alpha(v)\alpha(x_n))g(x_1, \ldots, x_n) x_{n+1}^2(1 - \alpha(e))
\]and since \(Q \) is prime and \(e \neq 0, 1 \), it follows \(f^a(\alpha(v)\alpha(x_1), \ldots, \alpha(v)\alpha(x_n))c\) is an identity for \(I \), for all \(r_1, \ldots, r_n, s_1, \ldots, s_n \in Q \). Since \(f(a_1, \ldots, a_n)_{a_{n+1}} \neq 0 \) and \(cea_{n+2} \neq 0 \) and by using the result in [16], it follows that \(f^a(\alpha(v)\alpha(x_1), \ldots, \alpha(v)\alpha(x_n))c\) is an identity for \(Q \). This implies that \(f(\alpha^{-1}(y_1), \ldots, \alpha^{-1}(y_n)) \) is also an identity for \(Q \). Moreover it is clear that \(\alpha^{-1} \) is \(X \)-outer, therefore \(f(x_1, \ldots, x_n) \) is an identity for \(Q \), a contradiction.

\[3.6. \text{Lemma.} \] Let \(R \) be a prime ring, \(f(x_1, \ldots, x_n) \) a non-central multilinear polynomial over \(C \) in \(n \) non-commuting indeterminates, \(I \) a nonzero right ideal of \(R \), \(b, c, q \in Q \) such that \(F(x) = bx - qxq^{-1}c \), for all \(x \in R \). If
\[
F(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) = 0,
\]
for all \(r_1, \ldots, r_n \in I \), then either \(char R = 2 \) and \(R \) satisfies \(s_4 \) or one of the following holds:
\[
(i) \quad f(x_1, \ldots, x_n)_{x_{n+1}} \text{ is an identity for } I; \quad (ii) \quad f(x_1, \ldots, x_n, x_{n+1})_{x_{n+2}} \text{ is an identity for } I, (b-c)I = (0) \quad \text{and } q^{-1}cI \subseteq I; \quad (iii) \quad F(I)I = (0).
\]

\[\text{Proof.} \] Here \(I \) satisfies
\[
(3.18) \quad \left[\left(\begin{align*}
bf & \left(\begin{array}{c}
\alpha(v) & \ldots \alpha(v) & \alpha(u) & \ldots \alpha(u) & \alpha(w) & \ldots \alpha(w)
\end{array}\right) - & \left(\begin{array}{c}
f(x_1, \ldots, x_n) - qf(x_1, \ldots, x_n)q^{-1}c
\end{array}\right) f(x_1, \ldots, x_n)
\end{align*}\right]
\]
and left multiplying by \(q^{-1} \), \(I \) satisfies
\[
(3.19) \quad \left[\left(\begin{align*}
bf & \left(\begin{array}{c}
\alpha(v) & \ldots \alpha(v) & \alpha(u) & \ldots \alpha(u) & \alpha(w) & \ldots \alpha(w)
\end{array}\right) - & \left(\begin{array}{c}
f(x_1, \ldots, x_n) - (f(x_1, \ldots, x_n)q^{-1}c)
\end{array}\right) f(x_1, \ldots, x_n).
\end{align*}\right]
\]
Since we assume \(f(x_1, \ldots, x_n) \) is not central valued on \(R \), by Fact \[3.2\] we have that either \(char R = 2 \) and \(R \) satisfies the standard identity \(s_4 \), or \(f(x_1, \ldots, x_n)_{x_{n+1}} \) is an identity for \(I \), or one of the following holds:

1. there exists \(\gamma \in C \) such that \(q^{-1}bx = \gamma x = q^{-1}cx \), for all \(x \in I \) (this is the case \(F(I)I = (0) \)).
2. \(q^{-1}(b-c)I = (0) \), that is \((b-c)I = (0) \), moreover \(f(x_1, \ldots, x_n, x_{n+1})_{x_{n+2}} \) is an identity for \(I \).
In this last case, by \(3.19\) it follows that \(I\) satisfies
\[
(3.20) \quad \left(bf(wx_1, \ldots, wx_n) - qf(wx_1, \ldots, wx_n)q^{-1}b \right) f(wx_1, \ldots, wx_n)
\]
and moreover, since \(I\) satisfies the polynomial identity \([f(x_1, \ldots, x_n), x_{n+1}]x_{n+2}\), in view of Proposition in \(23\), \(I = eQ\) for some idempotent \(e\) in the socle of \(Q\). Here we write \(f(x_1, \ldots, x_n) = \sum t_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)x_i\), where any \(t_i\) is a multilinear polynomial in \(n-1\) variables and \(x_i\) never appears in \(t_i\). Of course, if \(t_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)e\) is an identity for \(Q\), then \(f(x_1, \ldots, x_n)x_{n+1}\) is an identity for \(I\) and we are done. Thus assume there exists \(i \in \{1, \ldots, n\}\) such that \(t_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)e \neq 0\) for some \(r_1, \ldots, r_n \in I\). In particular,
\[
f(ex_1, \ldots, ex_{i-1}, ex_i(1-e), ex_{i+1}, \ldots, ex_n) = t_i(ex_1, \ldots, ex_n)ex_i(1-e)
\]
and by \(3.20\) \(Q\) satisfies
\[
bt_i(ex_1, \ldots, ex_n)ex_i(1-e)t_i(ex_1, \ldots, ex_n)ex_i(1-e)
\]
that is \(Q\) satisfies
\[
(3.21) \quad \left(-qt_i(ex_1, \ldots, ex_n)ex_i(1-e)q^{-1}b \right) t_i(ex_1, \ldots, ex_n)ex_i(1-e)
\]
and left multiplying by \((1-e)q^{-1}bq^{-1}\), we easily have that \(Q\) satisfies
\[
(3.22) \quad (1-e)q^{-1}bt_i(ex_1, \ldots, ex_n)eX(1-e)q^{-1}bt_i(ex_1, \ldots, ex_n)eX(1-e).
\]
By Lemma 2 in \(\text{[22]} \) and since \(e \neq 1\), it follows that
\[
(1-e)q^{-1}bt_i(ex_1, \ldots, ex_{i-1}, ex_{i+1}, \ldots, ex_n)e
\]
is an identity for \(Q\), that is \((1-e)q^{-1}bt_i(x_1e, \ldots, x_{i-1}e, x_{i+1}e, \ldots, x_ne)\) is an identity for \(Q\). In this case, since \(t_i(x_1e, \ldots, x_{i-1}e, x_{i+1}e, \ldots, x_ne)\) is not an identity for \(Q\), we get in view of the result in \(\text{[16]} \), \((1-e)q^{-1}be = 0\), that is \(q^{-1}bI \subseteq I\) and also \(q^{-1}eI \subseteq I\). \(\square \)

3.7. Theorem. Let \(R\) be a prime ring, \(f(x_1, \ldots, x_n)\) a multilinear polynomial over \(C\) in \(n\) non-commuting variables, \(I\) a non-zero right ideal of \(R\), \(F : R \to R\) be a non-zero generalized skew derivation of \(R\). Suppose that
\[
F(f(r_1, \ldots, r_n))f(r_1, \ldots, r_n) \in C,
\]
for all \(r_1, \ldots, r_n \in I\). If \(f(x_1, \ldots, x_n)\) is not central valued on \(R\), then either \(\text{char}(R) = 2\) and \(R\) satisfies \(s_4\) or one of the following holds:

(i) \(f(x_1, \ldots, x_n)x_{n+1}\) is an identity for \(I\);
(ii) \(F(I)I = (0)\);
(iii) \([f(x_1, \ldots, x_n), x_{n+1}]x_{n+2}\) is an identity for \(I\), there exist \(b, c, q \in Q\) with \(q\) invertible such that \(F(x) = bx - qxq^{-1}c\) for all \(x \in R\), and \(q^{-1}eI \subseteq I\); moreover in this case either \((b - c)I = (0)\) or \(b - c \in C\) and \(f(x_1, \ldots, x_n)^2\) is central valued on \(R\) provided that \(b \neq c\).

Proof. In view of all previous Lemmas and Propositions, we may assume \(I \neq R\) and \(F(x) = bx - qxq^{-1}c\), for all \(x \in R\). Moreover we may assume that there exist \(s_1, \ldots, s_n \in I\) such that \(F(f(s_1, \ldots, s_n))f(s_1, \ldots, s_n) \neq 0\). Therefore
\[
(bf(x_1, \ldots, x_n) - qf(x_1, \ldots, x_n)q^{-1}c)f(x_1, \ldots, x_n)
\]
is a central generalized polynomial identity for \(I\). Thus \(R\) is a PI-ring and so \(RC\) is a finite dimensional central simple \(C\)-algebra (the proof of this fact is the same of Theorem
1 in [7]). By Wedderburn-Artin theorem, $RC \cong M_k(D)$ for some $k \geq 1$ and D a finite-dimensional central division C-algebra. By Theorem 2 in [24]

$$(bf(x_1, \ldots, x_n) - qf(x_1, \ldots, x_n)q^{-1}c)f(x_1, \ldots, x_n) \in C$$

for all $x_1, \ldots, x_n \in IC$. Without loss of generality we may replace R with RC and assume that $R = M_k(D)$. Let E be a maximal subfield of D, so that $M_k(D) \otimes C E \cong M_t(E)$ where $t = k \cdot [E : C]$. Hence $(bf(r_1, \ldots, r_n) - qf(r_1, \ldots, r_n)q^{-1}c)f(r_1, \ldots, r_n) \in C$, for any $r_1, \ldots, r_n \in I \otimes E$ (Lemma 2 in [24] and Proposition in [29]). Therefore we may assume that $R \cong M_t(E)$ and $I = eR = (e_1R + \cdots + e_0R)$, where $t \geq 2$ and $l \leq t$.

Suppose that $t \geq 2$, otherwise we are done and denote $q = \sum_{r,s} q_{rs}e_{rs}$ and $q^{-1}c = \sum_{r,s} c_{rs}e_{rs}$, for $q_{rs}, c_{rs} \in E$. As in Lemma 3 we write

$$f(x_1, \ldots, x_n) = \sum t_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)x_i$$

and there exists some $t_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)x_i$ which is not an identity for I. In particular $qt_i(x_{1-1}, x_{i+1}, \ldots, x_n)x_i$ is not an identity for R, because q is invertible. Hence, again for

$$f(ex_1, \ldots, ex_{i-1}, ex_i(1-e), ex_{i+1}, \ldots, ex_n) = t_i(ex_1, \ldots, ex_{i-1}, ex_{i+1}, \ldots, ex_n)ex_i(1-e)$$

and by our hypothesis, we have that

$$qt_i(ex_1, \ldots, ex_{i-1}, ex_{i+1}, \ldots, ex_n)ex_i(1-e)q^{-1}d_i(ex_1, \ldots, ex_{i-1}, ex_{i+1}, \ldots, ex_n)ex_i(1-e)$$

is an identity for R, and by the primeness of R it follows that

$$(1-e)q^{-1}d_i(ex_1, \ldots, ex_{i-1}, ex_{i+1}, \ldots, ex_n)e$$

is an identity for R. By [16] and since $t_i(ex_1, \ldots, ex_{i-1}, ex_{i+1}, \ldots, ex_n)ex_i$ is not an identity for R, the previous identity says that $(1-e)q^{-1}ce = 0$. Thus $q^{-1}ce \leq I$.

In case $[f(x_1, \ldots, x_n), x_{n+2}]x_{n+2}$ is an identity for I, then by our assumption we get $(b - c)f(r_1, \ldots, r_n)^2 \in C$ for all $r_1, \ldots, r_n \in I$. In view of Fact 3.1 either $(b - c)I = (0)$ and we are done, or $b - c \in C$ and $f(x_1, \ldots, x_n)^2$ is central valued on R, provided that $b \neq c$.

Consider finally the case $[f(x_1, \ldots, x_n), x_{n+1}]x_{n+2}$ is not an identity for I. By Lemma 3 in [6], for any $i \leq l$, $j \neq i$, the element e_{ij} falls in the additive subgroup of RC generated by all valuations of $f(x_1, \ldots, x_n)$ in I. Since the matrix $(be_{ij} - q^{-1}c)e_{ij}$ has rank at most 1, then it is not central. Therefore $qe_{ij}q^{-1}ce_{ij} = 0$, i.e. $q_{ki}(q^{-1}c)_{ji} = 0$ for all k and all $j \neq i$. Since q is invertible, there exists some $q_{ki} \neq 0$, therefore $(q^{-1}c)_{ji} = 0$ for all $j \neq i$.

Consider the following automorphism of R:

$$\lambda(x) = (1 + e_{ij})x(1 - e_{ij}) = x + e_{ij}x - e_{ij}e_{ij}$$

for any $i, j \leq l$, and note that $\lambda(I) \subseteq I$ is a right ideal of R satisfying

$$\left[(\lambda(b)f(x_1, \ldots, x_n) - \lambda(q)f(x_1, \ldots, x_n)\lambda(q^{-1}c))f(x_1, \ldots, x_n), x_{n+1}\right].$$

If we denote $\lambda(q^{-1}c) = \sum_{rs} c_{rs}e_{rs}$, the above argument says that $c_{rs} = 0$ for all $s \leq l$ and $r \neq s$. In particular the (i, j)-entry of $\lambda(q^{-1}c)$ is zero. This implies that $e_{ii} = c_{ij} = \alpha$, for all $i, j \leq l$. Therefore $q^{-1}ce = \alpha x$ for all $x \in I$. This leads to $(b - c)f(r_1, \ldots, r_n)^2 \in C$ for all $r_1, \ldots, r_n \in I$ and we conclude by the same argument above.

For the sake of completeness, we would like to conclude this paper by showing the explicit meaning of the conclusion $F(I)I = (0)$, more precisely we state the following:
3.8. Remark. Let \(R \) be a prime ring, \(I \) be a non-zero right ideal of \(R \) and \(F : R \to R \) be a non-zero generalized skew derivation of \(R \). If \(F(I)I = (0) \) then there exist \(a, b \in Q \) and \(\alpha \in \text{Aut}(R) \) such that \(F(x) = (a + b)x - \alpha(x)b \) for all \(x \in R \), \(aI = (0) \) and one of the following holds:

(i) \(bI = (0) \);

(ii) there exist \(\lambda \in C \) and an invertible element \(q \in Q \) such that \(\alpha(x) = qxq^{-1} \), for all \(x \in R \), and \(q^{-1}by = \lambda y \), for all \(y \in I \).

Proof. As previously remarked we can write \(F(x) = ax + d(x) \) for all \(x \in R \), where \(a \in Q \) and \(d \) is a skew derivation of \(R \) (see \([3]\)). Let \(\alpha \in \text{Aut}(R) \) be the automorphism associated with \(d \), in the sense that \(d(xy) = d(x)y + \alpha(x)d(y) \), for all \(x, y \in R \). Thus, by the hypothesis, for all \(x, y \in I \),

\[
(ax + d(x))y = 0.
\]

For all \(x, y, z \in I \) we have:

\[
0 = F(xz)y = (ax + d(x))zy + \alpha(x)d(z)y
\]

and by (3.23) we obtain \(\alpha(x)d(z)y = 0 \) for all \(x, y, z \in I \). Moreover \(\alpha(I) \) is a non-zero right ideal of \(R \), so that it follows

\[
d(z)y = 0
\]

for all \(y \in I \). Once again by (3.23) we get \(axy = 0 \) for all \(z, y \in I \), that is \(aI = (0) \).

Finally in (3.24) replace \(z \) with \(xs \), for any \(x \in I \) and \(s \in R \), then:

\[
0 = d(xs)y = d(x)sy + \alpha(x)d(s)y
\]

for all \(x, y \in I \), \(s \in R \). In case \(d \) is \(X \)-outer, it follows that \(d(x)sy + \alpha(x)ty = 0 \), for all \(x, y \in I \) and \(s, t \in R \) (Theorem 1 in \([15]\)). In particular \(\alpha(x)ty = 0 \), which implies the contradiction \(\alpha(x) = 0 \) for all \(x \in I \). Therefore we may assume that \(d \) is \(X \)-inner, that is there exists \(b \in Q \) such that \(d(r) = br - \alpha(r)b \), for all \(r \in R \) and by (3.24)

\[
(bx - \alpha(x)b)y = 0
\]

for all \(x, y \in I \). Consider first the case \(\alpha \) is \(X \)-outer and replace \(x \) with \(xr \), for any \(r \in R \). Then \((brx - \alpha(x)br)y = 0 \) and, by Theorem 3 in \([14]\), \((brx - \alpha(x)bx)y = 0 \) for all \(x, y \in I \) and \(r, s \in R \). In particular \(bIRI = (0) \), which implies \(bI = (0) \) and we are done.

On the other hand, if there exists an invertible element \(q \in Q \) such that \(\alpha(r) = qrq^{-1} \), for all \(r \in R \), from (3.26) we have \(brx - qrq^{-1}b) = 0 \), for all \(x, y \in I \). Left multiplying by \(q^{-1} \), it follows \(\lambda[outer] = 0 \), and by Lemma in \([4]\) there exists \(\lambda \in C \) such that \(qrq^{-1}b = \lambda x \) for all \(x \in I \).

References