Hacettepe Journal of Mathematics and Statistics
Volume 40 (5) (2011), 725-736

SUBORDINATION RESULTS
OF MULTIVALENT FUNCTIONS
DEFINED BY CONVOLUTION

A.O. Mostafa*!, Mohamed K. Aouf* and Teodor Bulboaca?

Received 23:09:2010 : Accepted 23:03:2011

Abstract

Using the method of differential subordination, we investigate some
properties of certain classes of multivalent functions, which are defined
by means of convolution.
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1. Introduction

Let A, (p) denote the class of functions of the form
(11)  f(2) =2"+ > arp2™™, pneN={1,2,..},
k=n

which are analytic and p—valent in the unit disc U = {z € C: |z|] < 1}. If f and g are
analytic functions in U, we say that f is subordinate to g, written f(z) < g(z), if there
exists a Schwarz function w, which (by definition) is analytic in U, with w(0) = 0, and
|lw(z)| < 1 for all z € U, such that f(z) = g(w(z)), z € U. Furthermore, if the function
g is univalent in U, then we have the equivalence (cf., e.g., [18] and [19])

f(z) < g(2) & f(0) = g(0) and f(U) C g(U).
For functions f given by (1.1) and g € A, (p) given by

9(2) =2+ gy,
k=n
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the Hadamard product (convolution) of f and g is defined by

(F*9)(2) =2 + > aripbripz™ ™ = (g f)(2).

k=n

For the functions f, g € An(p) we define the linear operator DY, : An(p) — An(p), where
A>0,peN, meNy=NU{0}, by

and

(1.2)

DS ph(z) = h(2),
Az

Diph)(2) = (1= Mh(z) + s (h(2))',

DY',h(z) = Di, (DY, 'h(2))

> +AR\™
=24y <p P ) ks pbripz" P, m €N,
k=n

where h = f x g.

From (1.2) we may easily deduce that

(1.3)

2 2 (DX, +9)(2)) = DES (. 9)(2) = (L= VDR, (f = )2,

for)\ZOandmeNo.

For the special case p = 1, the operator DY',(f * g) was introduced and studied by
Aouf and Mostafa [4], while for different choices of the function g, the operator DY',,(f*g)
reduces to several interesting operators as follows:

(i)

(i)

(iii)

pt+n

0+ 9)(2) = DR f(2) = 27+ 000, (B25) " 0247, A 2 0,
Taking in this special case A = 1, we have D", (f * g) = D, f, where D;" is the
p—valent Siligean operator introduced and studied by Kamali and Orhan [14]
(see also [3]);
For m =0 and

For bgyp =1forallk >n <0r g(z) =2+ f >7 we have

1) g@=2t 3 [PEEAEDT kS0 peN, Lse N,
k= p+i
n+p
we see that Dg’p(f xgx) = fxge =1p(s, A1) f, where I,(s, A, 1) is the generalized
multiplier transformation which was introduced and studied by Cétas [7]. The
operator Ip(s, A, 1) contains as special cases the multiplier transformation (see
[8]), the generalized Sildgean operator introduced and studied by Al-Oboudi [1],
which in turn contains as a special case the Sdligean operator (see [24]).

For p =1 and

where 0 < 8 < 1, A > 0, we see that DYy (f * g«s) = D;n’ﬁf is the fractional
differential multiplier operator defined and studied by Al-Oboudi and Al-Amoudi
in [2].

For m =0 and

e . . k+p
(15) ¢z :zuz k (o)
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where a; € C,i=1,1,and 8; € C\{0,—1,-2,...},j =1,s, withl < s+1,1,s €
No, we see that DS ,(f*g*) = f*g* = HY (@1, ou; B, ... Bs) f = H] Jeuf,
where His [a1] is the Dziok-Srivastava operator introduced and studied by Dziok
and Srivatava [9] (see also [10] and [11]).

The operator H?S[al] contains in turn many interesting operators, such as the Hohlov
linear operator (see [13]), the Carlson-Shaffer linear operator (see [6] and [23]), the
Ruscheweyh derivative operator (see [22]), the Bernardi-Libera-Livingston operator (see
[5], [15] and [16]), and the Owa-Srivastava fractional derivative operator (see [20]).

Using the linear operator DY',, we define a new subclass of the class A, (p) as follows:
1.1. Definition. For fixed parameters A and B, with -1 < B< A<1,for A >0,p €N,

m € No and g € An(p), we say that a function f € A,(p) is in the class T, (\; 4, B), if
it satisfies the following subordination condition

(DR (f+9)(2)" 1+ 4z
pzp—1 14+ Bz’

(1.6)

A function f analytic in U is said to be convez of order n, n < 1, if f'(0) # 0 and

2f"(2)
f'(2)

Re<1—|— )>77,z€U.

If n = 0, then the function f is convez.

1"
It is easy to check that, if h(z) = %, then h'(0) # 0 and Re (1 + Z:/é?) =
Re 1 :_ gz >0, z € U, whenever |B| <1 and A # B, hence h is convex in the unit disc.

If B # —1, from the fact that h(Z) = h(z), z € U, we deduce that the image h(U) is
symmetric with respect to the real axis, and that h maps the unit disc U onto the disc
1-AB A—-B

1-— B? 1- B2’

w —

If B = —1, the function A maps the unit disc U onto the half

1-A
plane Rew > —5 hence we obtain:

1.2. Remark. The function f € A(p) is in the class T, (A\; A, B) if and only if

(DX, (f*9)(2) 1-AB| A-B
‘ par 1 -1 <1_Bz7z€U7forB;«é—17

and

(DXL 9)(2)  1-

Re Y 3

A7 ze U, for B=—1.

Denoting by Ty, (A;y) the class of functions f € A,(p) that satisfy the inequality
(DX (f * 9)(2))

zp—1

Re >v,z€U (0<v<p),

where g € A, (p), we have T}, (A7) =17, ()\;1 — 27”7 —1).

In the present paper, we derive several inclusion relationships for the function class
m .
T (A A, B).
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2. Preliminaries
To prove our main results, we need the following lemmas.

2.1. Lemma. [12] Let h be a convez function in U with h(0) = 1. Suppose also that the
function ¢ given by

(21)  @(z) =1+ cpinz" + a1z 4.,

is analytic in U. Then
o)+ 22 <h(s) (Rey 20,7 £0),
implies

(22)  wl(2) <9¥(z) =

3|2

z*%/ tn  h(t) dt < h(z),
0
and 1 is the best dominant of (2.2).

2.2. Lemma. [25] Let ® be analytic in U, with
®(0)=1 and Re®(z) > %, zeU.

Then, for any function F analytic in U, the set (® = F)(U) is contained in the convex
hull of F(U), i.e. (®* F)(U) C coF(U).

For real or complex numbers a, b and ¢, the Gauss hypergeometric function is defined
by

a(a—&-l)~b(b-|—1)z_2

c 1! c(c+1) 2!+.“

(2.3) . .
:ZMﬁ a,beC, ceC\{0,-1,-2,...},

where (d)s =d(d+1)...(d+ k —1) and (d)o = 1. The series (2.3) converges absolutely
for z € U, hence it represents an analytic function in U (see [26, Chapter 14]).

Each of the following identities are fairly well-known:

2.3. Lemma. [26, Chapter 14] For all real or complex numbers a, b and ¢, with ¢ #
0,—1,-2,..., the following equalities hold:
1 —
/ Pt 1 eyt dr = LOLCZY b e
0

(2.4) T(c)

where Rec > Reb > 0,

(2.5) aFi(a,b,c;2) = (1 —2)" "2 Fy (a, c—b,c; %) ,
P

and

(2.6) oF1(a,b,c; z) =2 Fi(b,a,c;z).

3. Main Results
Unless otherwise mentioned, we assume throughout this paper that

a>0, -1<B<A<L1, A>0,peN, meNy.
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3.1. Theorem. Let g € An(p) be a given function, and suppose that the function f €
An(p) satisfies the subordination condition

(1—a) (DX,M)() +a(DS3h(=)) 1+ Az

pzp—1 14+ Bz’
where h = f+g, and A\ > 0. Then
(DX,h(2)' 14 Az
1 A AP AT
B SEEL <QE) < T
where

(3.2) Q(z) = {% +(1- A)(l-l-BZ)*l o Y (17 7(Mn + 1; 1+Bz)7 if B#0,
1+ AZ ifB:O,

a)\n+p

is the best dominant of (3.1). Furthermore,

m /

(3.3) Re%>mz€U (0<n<1),

where

5 n_{3+(1——)(1—B)1 2P (L1, £+ 555 ), i B#0,
1- 24, if B=0.

The inequality (3.3) is the best possible.
Proof. 1If we let

35 o= el

then ¢ is of the form (2.1), and it is analytic in U. Applying the identity (1.3) in (3.5)
and differentiating the resulting equation with respect to z, we get

i m 4
(1= a) (DX,h(2) +a (D5 h(=)) )y D) 1Az
pzP—1 =9 D 1+ Bz’

, 2€ U,

Using Lemma 2.1 for v = p)\7 we deduce that

(D%ph(z))l
pzPt
< Q(2)
e v A e L
o’ /0 t 1+ Bt di

4+(1-$0+B) "ok (L1, 2+ 152, i B#O,
14+ —2 Az if B=0,

a/\n+p

where we have also made a change of variables followed by the use of the identities (2.4),
(2.5), and (2.6). Next we will show that

inf {ReQ(z) : |2z] < 1} = Q(-1).
Indeed, for |z| < r < 1 we have

1+Az> 1-— Ar

Re 1+ Bz 1—Br’
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Setting
1+ Azs
Gl9) = T Bes

and

dv(s) = ainsﬁflds, 0<s<1,

1
which is a positive measure on the closed interval [0, 1], we have Q(z) = /G(s, z)dv(s),

0
and thus

1
1— Asr
R > —d =Q(— < 1.
2Q(:) > [ {=Fmdu(s) = Q). ld < 7 <
Letting » — 17 in the above inequality, we obtain the assertion (3.2).

Finally, the estimate (3.3) is the best possible as the function @ is the best dominant
of (3.1), which completes the proof of the theorem. O

p+n
Taking g(z) = 2P + f . in Theorem 3.1, we have the following result:

3.2. Corollary. If the function f € An(p) satisfy the subordination condition

(1—a) (D, f(2)) +a (Dgijlf(z))' PRSP

pzp—1 1+ Bz’

with A > 0, then

(Dgfpf(z))/ 1+ Az

Tt (@<
where @ 1is given by (3.2), and it is the best dominant. Furthermore,

(Dgl,pf(z))l

(36) Re W >n, z € U7
where n is given by (3.4), and the inequality (3.6) is the best possible. a

For m =0 and g = g* given by (1.5), using the identity
2 (HP [a]f(2))" = ar HY Jaa + 1)f(2) + (p — aa) HY aa] f(2),
Theorem 3.1 reduces to the next result:
3.3. Corollary. Let A >0, let ; € C, i = 1,1, and B; € C\ {0,-1,-2,...}, j =1 5,

withl < s+1, 1, s € No, and suppose that the function f € An(p) satisfy the subordination
condition

(1_,\(;%) (H?S[aﬂf(z)),"'% (H?S[a1+1]f(z))/ 1+ Az

pzP—1 1+ Bz’
Then
(17 o] £(=)) _
B A e

where @ 1is given by (3.2), and it is the best dominant. Furthermore,

(17 o] /()

(3.7 Re a1

>n, z€ U,
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where n is given by (3.4), and the inequality (3.7) is the best possible. a

Taking in Theorem 3.1 the parameter m = 0 and g = g« of the form (1.4), and using
the identity (see [7])

Az (Lp(s, A\ D f(2)) = (p+D) Li(s+1, 0,0 f(2) = [P(L=X) +1 Ly (s, A, D) f(2), A >0,
we deduce the following result:

3.4. Corollary. Let A > 0, p € N, andl, s € No, and suppose that the function f € An(p)
satisfy the subordination condition

[1-a(1+ D] (LeADAE) +a(1+ D) (L +1LADFE) 144,

pzp—1 =1 + Bz’
Then
(Ip(s, A, D) f(2) 1+ Az
pzp—! < Q) = 14 Bz’

where @ 1is given by (3.2), and it is the best dominant. Furthermore,

Re (IP(87 )‘7 l)f(Z))/

(3.8) g

>n, z€ U,

where n is given by (3.4), and the inequality (3.8) is the best possible. a

3.5. Theorem. Let g € A,(p) be a given function, and suppose that f € T, (\;n),
(0<n<p). Then

(1—a) (DF,h(=)) +a (D3 (=) )

Re g >, |2| <R,
where h = f % g, and
1
v/ (aAn)? 2—aln|n
(39) R= Y@ ;p a ”} .

The result is the best possible.
Proof. Since f € T,",(\;n), we write

(Dgl,ph(z))l

zp—1

(3.10) =1+ (p—nu(z).

Then the function w is of the form (2.1), analytic in U, and has a positive real part in U.
Substituting the relation (1.3) in (3.10), and differentiating the resulting equation with
respect to z, we have

|G- (DhE) +a (DIRE) |y
p=n zPt

(3.11)

Applying the following well-known estimate [17]
[zu’(2)| 2nr™

< = 1

Reu(z) = 1 —r2n’ lzl =r <1,
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in (3.11), we get

/

L =) (DEhE) +a (D;*fglh(z))
p=1 e
2 anr™

> - = :

> Reu(z) (1 p(l—rzn)> Lzl =r <1

It is easy to see that the right-hand side of the inequality (??) is positive whenever r < R,
where R is given by (3.9).

Re

-n

In order to show that the bound R is the best possible, we consider the function
f € An(p) such that, for the given function g € A, (p) we have

DY h(z2)) 1427
(;;,7,1) :77+(p—77)1_zn7 zeU (0<n<p).
Noting that
m !/ m+1 !
L[ (=) (DE,h(2) +a (DY h(2)) p(1= )~ 20ams”
—-n = =0,
p—m p(—2n)

for z = Rexp (%)7 the proof of the Theorem 3.5 is complete. O

Putting a = 1 in Theorem 3.5, we obtain the following result:

3.6. Corollary. Let g € An(p) be a given function, and suppose that f € T, (\;n),
(0<n<p). Then f € T;?n“()\;n) for |z| < R*, where
1

R — v (An)?2 +p? — An E
p
The result is the best possible. O

Now we define the integral operator Fs, : An(p) — An(p) by
o+ = s
Fip(N) = 52 [T @yt zev (0> ).
0

P
3.7. Theorem. Let g € A,(p) be a given function, and suppose that f € T, (X A, B).
Then

(DY, Fs ph(2))’ 14+ Az
B — <0(z) < B>

where h = f * g, and the function © is given by
o) = {g (1= +B2) R (L1521 B ), B £,

(3.12)

s A
14 HEs Az, if B=0,
and it is the best dominant of (3.12). Furthermore,
DY, Fsph(z))
Re —( Ap P (Z)) >3, 2z€U (6§ >—p),

pzP~t

where

ﬁ_{%ﬂl—%)(l—mlzﬂ (L1524 1555), i B#0,

1— B4, if B=0.
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The result is the best possible.

Proof. Letting

(DQTPF&P}Z(Z))/

(313) ¢(2) = P , z€U,

then ¢ is of the form (2.1), and analytic in U. Using the operator identity
z (DX Fsph(2)) = (p+ 8) DX ph(2) — DY, Fs ph(2)
in (3.13), and differentiating the resulting equation with respect to z, we have

(DT,ph(z))/

/
_ zp'(z) 14 Az
7¢(Z)+p+5 1+ Bz’
Now the remaining part of Theorem 3.7 follows by employing the techniques that were
used in the proof of Theorem 3.1. (|

It is easy to see that,

(DQPF&Ph(Z))I _ p+4
pzpfl - sz‘HS

/ t* (DY,h(t)) dt, z € U,
0

whenever f € A,(p) with § > —p. In view of the above identity, Theorem 3.7 for the
special case A =1—2n (0 <n < 1) and B = —1 yields the next result:

3.8. Corollary. Let g € An(p) be a given function, and suppose that f € An(p) satisfies
the inequality
(D :\Yfph(z))/
pzP~!
where h = f*g, and A\ > 0. Then
Re {’” 0 / o (D;*fph(t))’dt]
0

pzp‘ﬂs

Re >n,z€eU (0<n<1),

11,210 L

>n+(1—n){zF1< - +1;§>—1:|7ZEU(5>—1)).

The result is the best possible. O

3.9. Theorem. Let g € An(p) be a given function, and suppose that the function H €
An(p) satisfies the inequality
DY, H(z)

2P

Re >0, z€ U.

If the function f € An(p) satisfies the inequality

DY, h(z)

-1
D;rf/\H(z)

<1, zeU,

where h = f * g, then

!

z (DXph(2)

Re
Dy h(z)

>0, |z| < Ro,

where

\/2—_
(3.14) Ro— 9In? + 4p(p + n) 3n.

2(p+mn)
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Proof. Letting

DY h(z)

(3.15) o(z) = WL

D/\,pH(Z)

then ¢ is analytic in U, with ¢(0) = 0 and |¢(z)| < 1 for all z € U.
Defining the function ¥ by

1
—l=enz" +ent12" +--- 2€ T,

23 U o),

Y= o)

n!

) 2:07

then 4 is analytic in U\ {0} and continuous in U, hence it is analytic in the whole unit
disc U. If r € (0,1) is an arbitrary number, since |p(z)| < 1 for all 2 € U, we deduce

PO < e 1) _ 1
zn |z|=r |Z|” rm

|1(2)] < max

|z|=r

lz| <r < 1.

By letting » — 1~ in the above inequality, we get [¢(2)] < 1 for all z € U, i.e. ¢(2) =
2"1(z), where the function ¥ is analytic in U, and |[¢(2)] < 1, z € U.

Therefore, (3.15) leads to
DXph(2) = DX, H(2) [1 4 2" ¢(2)],
and differentiating logarithmically with respect to z the above relation, we obtain

2 (D5,h(2)" 2 (DRLHE)' | 2" [n(z) + 20/ ()]

3.16 =

(3.16) Dy h(2) Dy H(z) 1+ zm)(2)

e DYLH(2) - .
etting x(z) = —, Wwesee that the function x is of the form (2.1), analytic in U

with Rex(z) > 0 for all z € U, and
2 (DX, H() _ 2x'(2)

p = +p
Dy, H(z) x(2)
so we find from (3.16) that
D™ h 4 ’ n ;
1n) ReZPAE) |G| [ [l + 2 ) | sev.
DY h(z) x(2) 1+ 2m(2)
Using the following known estimates [21] (see also [17])
X'()| 2! n(z) + 2¢'(2) n
—= d = 1
x(z) |~ 1—r2n an 14+ 2zmp(z) |~ 11—’ Izl =r <1,
from (3.17) we deduce that
D™ h 4 _ n _ 2n
I podnrt o™
Dy h(z) 1—r2n
and the right-hand side fraction is positive provided that r < Ry, where Ry is given by
(3.14). O

3.10. Theorem. Let g € An(p) be a given function, and suppose that the function
H € A, (p) satisfies the inequality

(3.18) ReM > l, z € U.
zP 2
If f € ;7 (N A, B), then

f*HeTm (XA B).
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Proof. A simple calculation shows that

(DX, (Fxgx D))" _ (DX,(f*9)(2)  H(z)

pzpfl pzpfl 2P

Using the assumption (3.18) and the fact that the function i j:: gz is convex in U, from
z

Lemma 2.2 follows
(DXp(f g+ H)()" 14 Az
pzp—1 1+ Bz’
that is f* H € T, (A A, B). a

3.11. Remark. Specializing in the above results the parameters A and m, and the func-
tion g, we obtain new results corresponding to the operators defined in the introduction.
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