OPTIMAL RESTRICTED THREE-STAGE DESIGNS

Sevil Bacanli

Received 15:01:2006 : Accepted 08:12:2006

Abstract

In this study optimal restricted three stage designs are examined and compared with optimal restricted two stage, fixed sample and sequential designs. Then the results are discussed.

Keywords: Optimal restricted three stage design, Optimal restricted two stage design, Sequential design, Fixed sample design, Efficiency.

1. Introduction

In general data are analyzed after groups of observations are entered into a group sequential study. Group sequential designs are generally more practical and they provide much of the saving possible from sequential designs.

In most randomized clinical trials with sequential patient entry, a fixed sample size design is unjustified on ethical grounds and sequential designs are often impractical. Therefore group sequential designs are widely used in clinical trials. Group sequential designs are reviewed in detail by Jennison & Turnbull [8].

A two-stage design is the simplest form of group sequential design. Owen [9] described two-stage tests for one-sided hypothesis about a normal mean with known variance. Hald [7] derived optimal designs for this same problem using minimax and Bayes weighted average optimality criteria. Calton & McPherson [1] considered hypothesis tests for normal and binomial responses and presented optimal two-stage designs, which did not allow acceptance of the null hypothesis at the first stage. Dewith [5] extended the work of Calton & McPherson [1] for binomial responses by developing optimal designs that allowed acceptance or rejection at the first stage none of these designs used the fixed sample critical value at the final stage. Case et. al. [2] developed the optimal restricted two-stage design (OR2) that have the restriction of using the fixed sample critical value at the final stage.

Department of Statistics, Hacettepe University, Beytepe, 06532, Ankara, Turkey.
E-mail: sevil@hacettepe.edu.tr
Case et. al. [3] have suggested the optimal restricted three-stage design (OR3). This design, an extension of the OR2 design but the sample sizes are the same at each stage.

This study is organized as follows: In section 2, the OR2 design is described. The OR3 design and the efficiency of the OR3 design relative to other designs are examined in section 3 and section 4, respectively.

2. Optimal restricted two-stage designs

In this section, we examined OR2 design for response variable has an normal distribution with mean (μ) and known variance (σ²). For testing H₀ : θ = θ₀ against H₁ : θ > θ₀, the OR2 design is defined as follows;

Stage I: Accrue n₁ observations and calculate the test statistic,

\[Z_1 = \frac{\hat{\theta} - \theta_0}{\sigma_\theta} \]

where \(\hat{\theta} \) is calculated from data on the first n₁ observations. If \(Z_1 < C_1 \); Accept H₀, if \(Z_1 > C_2 \); Reject H₀, otherwise; continue to the second stage.

Stage II: Accrue an additional n₂ observations. Let \(n = n_1 + n_2 \) and calculate,

\[Z = \frac{\hat{\theta} - \theta_0}{\sigma_\theta} \]

where \(\hat{\theta} \) is calculated from data on all n observations. If \(Z < C_3 \); Accept H₀, otherwise reject H₀.

Here, \(Z_1 \) and \(Z \) have a standard normal distribution and their joint distribution is multivariate normal with zero means, unit variance, and correlation \((n_1/n)^{1/2} \).

The maximum sample size for the two-stage design is n and is realized whenever a second stage is necessary. The expected sample size (ESS) of the two-stage design is given by Equation (3) below:

\[
\text{ESS}_2(\mu) = n \left[1 - (1 - p)P_s(\theta) \right],
\]

where \(P_s(\theta) \) denote the probability that the trial will be stopped at the first stage, and \(p \) is the ratio of the number of observations at the first stage to the number of total observations at the second stage, that is \(p = n_1/n \). The value \(\theta \) can be computed for \(\theta_0 \) and \(\theta_1 \).

There are five unknown parameters in the two-stage design, namely: \(n_1, n_2, C_1, C_2 \) and \(C_3 \). The critical value at the second stage, \(C_3 \), will be set equal to that of the fixed sample test

\[
C_3 = \phi^{-1}(1 - \alpha),
\]

where \(\phi(x) \) denotes the standard normal distribution function. The other four parameters of interest are chosen to satisfy the two equations:

\[
\alpha = 1 - \phi(C_2) + B(C_1, C_2; C_3, \infty; p),
\]

\[
1 - \beta = 1 - \phi(C_2 - u\sqrt{p}) + B(C_1 - u\sqrt{p}, C_2 - u\sqrt{p}, C_3 - u, \infty; p),
\]

where,

\[
B(a, b, c, d; p) = \frac{1}{2\pi\sqrt{1-p}} \int_a^b \int_c^d \exp[-(1/2)(1-p)(y^2 - 2\sqrt{p}yz + z^2)] \, dy \, dz,
\]

and \(u = \sqrt{n}(\theta_1 - \theta_0)/\sigma \).
Now, the probability of rejecting H_0 at the first stage plus the probability of continuing the trial and rejecting H_0 at the second stage is equal to α, when assuming H_0 is true. The desired power of the trial $1 - \beta$ is the same probability under the alternative hypothesis. Equations (5) and (6) are solved iteratively by numerical integration of the bivariate normal distribution using a double precision function [2, 3].

The optimal parameter values which are necessary for the OR_2 design, are obtained using the program written by Case et. al. [2, 10].

With five parameters and only three constraints given by equations (4), (5) and (6), minimax or Bayes optimality criteria are used to determine the parameter values [2]. In this study, we have examined the Bayes criteria.

Bayes Criterion: Minimize a weighted average of the ESS under H_0 and H_1, that is:

$$(7) \quad \min \ ESS_w(\theta) = (1 - w)ESS(\theta_0) + wESS(\theta_1)$$

Using a weight of $w = 0$ for this criterion gives the most efficient designs if the null hypothesis is true while a weight of $w = 1$ gives the most efficient designs if the specified alternative is true [2, 3].

The optimal design parameters (C_1, C_2, C_3, n_1, n_2), the probabilities $P_s(\mu)$, and the maximum and expected sample sizes have been calculated for several values of α and $1 - \beta$. Sometimes the choice of p is determined by factors unrelated to an optimal design. For some studies it might be practical to choose equal samples $p = 0.50$, at each stage.

The optimal design parameters, $P_s(\mu)$, n and $ESS(\mu)$ obtained using the Bayes criteria in $p = 0.50$ are given in Table 1 for $\alpha = 0.01, 0.05, 1 - \beta = 0.80, 0.90$. In the tables, n_f denotes the fixed sample size.

Table 1. Optimal restricted two-stage one-sided designs for bayes criterion with $\alpha = 0.01, 0.05; 1 - \beta = 0.80, 0.90$ (p = 0.50).

<table>
<thead>
<tr>
<th>w</th>
<th>α</th>
<th>$1 - \beta$</th>
<th>p</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>n_f^*</th>
<th>n^*</th>
<th>$ESS(\theta_0)^*$</th>
<th>$ESS(\theta_1)^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.01</td>
<td>0.80</td>
<td>0.50</td>
<td>1.052</td>
<td>2.833</td>
<td>2.326</td>
<td>10.036</td>
<td>10.849</td>
<td>6.212</td>
<td>8.641</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.50</td>
<td>1.014</td>
<td>2.856</td>
<td>2.326</td>
<td>13.017</td>
<td>14.085</td>
<td>8.123</td>
<td>10.778</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.80</td>
<td>0.638</td>
<td>2.150</td>
<td>1.645</td>
<td>6.183</td>
<td>6.907</td>
<td>4.303</td>
<td>5.194</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.50</td>
<td>0.595</td>
<td>2.178</td>
<td>1.645</td>
<td>8.564</td>
<td>9.558</td>
<td>6.029</td>
<td>6.886</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.80</td>
<td>0.50</td>
<td>1.310</td>
<td>2.690</td>
<td>2.326</td>
<td>10.036</td>
<td>11.612</td>
<td>6.343</td>
<td>8.561</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.50</td>
<td>1.253</td>
<td>2.720</td>
<td>2.326</td>
<td>13.017</td>
<td>15.009</td>
<td>8.266</td>
<td>10.687</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.80</td>
<td>0.768</td>
<td>2.066</td>
<td>1.645</td>
<td>6.183</td>
<td>7.203</td>
<td>4.328</td>
<td>5.175</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.50</td>
<td>0.700</td>
<td>2.109</td>
<td>1.645</td>
<td>8.564</td>
<td>9.874</td>
<td>6.046</td>
<td>6.864</td>
<td></td>
</tr>
</tbody>
</table>

* Multiply each value by $(\sigma/\delta)^2$

3. **Optimal restricted three-stage designs**

In this section the OR_3 design will be examined. General construction of the design is as in the OR_2 design given in section 2. However there are six unknown parameters and the stage number is three in this design. Also, the sample sizes must be equal for each stage of the design [3].
The \(OR_3 \) design for normal mean testing is given as follows:

Stage I: Accrue \(n_1 \) observations and calculate test statistic,

\[
Z_1 = \frac{\hat{\theta} - \theta_0}{\sigma_{\hat{\theta}}},
\]

where \(\hat{\theta} \) is calculated from data on the first \(n_1 \) observation. If \(Z_1 < C_1 \); Accept \(H_0 \), if \(Z_1 > C_2 \); Reject \(H_0 \), otherwise; continue to the second stage.

Stage 2: Accrue an additional \(n_2 \) observations. Let \(n = n_1 + n_2 \) and calculate,

\[
Z_2 = \frac{\hat{\theta} - \theta_0}{\sigma_{\hat{\theta}}},
\]

where \(\hat{\theta} \) is calculated from data on \(n \) observations. If \(Z_2 < C_3 \); Accept \(H_0 \), If \(Z_2 > C_4 \); Reject \(H_0 \), otherwise; continue to the third stage.

Stage 3: Accrue an additional \(n_3 \) observations. Let \(n = n_1 + n_2 + n_3 \) and calculate,

\[
Z_3 = \frac{\hat{\theta} - \theta_0}{\sigma_{\hat{\theta}}},
\]

where \(\hat{\theta} \) is calculated from data on all \(n \) observations. If \(Z_3 < C_5 \); Accept \(H_0 \), otherwise, reject \(H_0 \).

There are eight unknown parameters in the \(OR_3 \) design, namely \(n_1, n_2, n_3, C_1, C_2, C_3, C_4 \) and \(C_5 \). The critical value at the final stage \(C_5 \), is equal to that of the fixed sample test. However this design is used in the case of equal sample sizes at each stage, so reducing the number of unknown parameters to six.

The joint distribution of \(Z_1, Z_2 \) and \(Z_3 \) is trivariate normal with zero mean vector and correlation matrix (\(\Sigma \)) given by

\[
\Sigma = \begin{bmatrix}
1 & \rho_{12} & \rho_{13} \\
\rho_{12} & 1 & \rho_{23} \\
\rho_{13} & \rho_{23} & 1
\end{bmatrix},
\]

where \(\rho_{12} = \left[n_1/(n_1 + n_2) \right]^{1/2}, \rho_{13} = \left[n_1/(n_1 + n_2 + n_3) \right]^{1/2} \) and \(\rho_{23} = \left[n_1 + n_2/(n_1 + n_2 + n_3) \right]^{1/2} \).

However, as the sample size is equal for each stage, the correlation matrix will be as follows,

\[
\Sigma = \begin{bmatrix}
1 & \sqrt{1/2} & \sqrt{1/3} \\
\sqrt{1/2} & 1 & \sqrt{2/3} \\
\sqrt{1/3} & \sqrt{2/3} & 1
\end{bmatrix}_{\text{sym}}
\]

The maximum sample size for the three stage design is \(n = n_1 + n_2 + n_3 \), and is calculated whenever all the stages are necessary. The expected sample size of the three-stage design is given by equation (11) below:

\[
\text{ESS}_3(\theta) = n_1 + (1 - P_1(\theta))n_2 + (1 - P_2(\theta))n_3,
\]

where \(P_i(\theta) \) denotes the probability that the trial will be stopped at the \(i \)th stage.

The six unknown parameters for a three-stage test are chosen to satisfy the two equations:

\[
\begin{align*}
\alpha &= 1 - \phi(C_2) + B(C_1, C_2; C_4, \infty; \rho_{12}) + T(C_1, C_2; C_3, C_4; C_5; \infty; \Sigma), \\
1 - \beta &= 1 - \phi(C_2 - u\rho_{13}) + B(C_1 - u\rho_{13}, C_2 - u\rho_{13}; C_4 - u\rho_{23}; \infty; \rho_{12}) \\
&\quad + T(C_1 - u\rho_{13}, C_2 - u\rho_{13}; C_3 - u\rho_{23}, C_4 - u\rho_{23}; C_5 - u\rho_{12}; \infty; \Sigma),
\end{align*}
\]
where $B(a; b; c; d; \rho)$ and u were as given in section 2, and

$$T(a; b; c; d; e; f; \Sigma) = \frac{1}{\sqrt{2\pi\Sigma}} \int_a^b \int_e^f \exp\left[-\frac{1}{2}(X'\Sigma^{-1}X)\right] dx,$$

Equation 12, which is the probability of rejecting H_0 at the first stage plus the probability of continuing the trial and rejecting H_0 at the second stage plus the probability of continuing the trial and rejecting H_0 at the third stage is equal to α under the H_0 hypothesis. Equation 13 is the same probability under the H_1 hypothesis [2, 3].

Equations 12 and 13 are solved iteratively by numerical integration of the multivariate normal distribution using the subroutines of Donnelly [6] and Schervish [11].

With six parameters and only two constraints, the parameter values are chosen to minimize $\text{ESS}(\mu)$ for H_0 or H_1 (Bayes criteria). Therefore the algorithm used to obtain the parameter values for the OR_3 design is almost identical in the OR_2 design [3].

Table 2. Optimal design parameters for the OR_3 one-sided designs for $\alpha = 0.01, 0.05; 1 - \beta = 0.80, 0.90$.

<table>
<thead>
<tr>
<th>w</th>
<th>α</th>
<th>$1 - \beta$</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>n_f^a</th>
<th>n^a</th>
<th>$\text{ESS}(\theta_0)^a$</th>
<th>$\text{ESS}(\theta_1)^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.01</td>
<td>0.80</td>
<td>0.738</td>
<td>3.819</td>
<td>1.318</td>
<td>2.598</td>
<td>2.326</td>
<td>10.036</td>
<td>11.642</td>
<td>5.018</td>
<td>8.430</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.649</td>
<td>3.747</td>
<td>1.335</td>
<td>2.632</td>
<td>2.326</td>
<td>13.017</td>
<td>15.100</td>
<td>6.639</td>
<td>10.544</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.80</td>
<td>0.342</td>
<td>2.539</td>
<td>0.877</td>
<td>1.945</td>
<td>1.645</td>
<td>6.183</td>
<td>7.543</td>
<td>3.710</td>
<td>4.946</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.234</td>
<td>2.470</td>
<td>0.879</td>
<td>2.015</td>
<td>1.645</td>
<td>8.564</td>
<td>10.362</td>
<td>5.310</td>
<td>6.423</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.80</td>
<td>0.816</td>
<td>2.796</td>
<td>1.724</td>
<td>2.661</td>
<td>2.326</td>
<td>10.036</td>
<td>12.646</td>
<td>5.219</td>
<td>8.029</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.535</td>
<td>2.719</td>
<td>1.907</td>
<td>2.696</td>
<td>2.326</td>
<td>13.017</td>
<td>16.662</td>
<td>7.290</td>
<td>9.763</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.80</td>
<td>0.312</td>
<td>2.150</td>
<td>1.184</td>
<td>2.023</td>
<td>1.645</td>
<td>6.183</td>
<td>7.976</td>
<td>3.833</td>
<td>4.823</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.012</td>
<td>2.095</td>
<td>1.313</td>
<td>2.067</td>
<td>1.645</td>
<td>13.017</td>
<td>11.048</td>
<td>5.738</td>
<td>6.252</td>
<td></td>
</tr>
</tbody>
</table>

* Multiply each value by $(\sigma/\bar{R})^2$

The design parameters (C_1, C_2, C_3, C_4 and C_5), and the maximum and expected sample sizes obtained using the Bayes criteria are given in Table 2 for $\alpha = 0.01, 0.05; 1 - \beta = 0.80, 0.90$.

An Example

Suppose that an investigator is interested in conducting a clinical trial with the OR_3 design for comparing a test drug (T) with a placebo (P). Based on information obtained from a pilot study, data from the test drug and the placebo seem to have a common variance, i.e., $\sigma^2 = \sigma_T^2 = \sigma_P^2 = 4$ with $\mu_T = \mu_P = 1$ [4].

Suppose we wish to design this trial, using a 5% significance level for a one-sided test of the hypothesis with 90% power to distinguish between the test drug and the placebo. We assume that the measurements are normally distributed.

The required fixed sample size is

$$n_f = \frac{(8.564)(2)(4)}{1^2} \approx 69.$$
The maximum sample sizes needed for the OR_3 design optimized under H_0, and optimized under H_1 are given by

$$n_{0\text{max}} = (10.362)8 = 82.89 \simeq 83 \quad \text{and} \quad n_{1\text{max}} = (11.048)8 = 88.38 \simeq 88.$$

Hence, it is necessary to have

$$n_0 = 83/3 \simeq 27 \quad \text{and} \quad n_1 = 88/3 \simeq 29$$

patients per group for each analysis.

4. Comparison with other designs and results

In this section, the OR_3 design will be compared with the fixed sample, sequential and OR_2 designs.

The efficiency of the OR_3 design relative to the fixed sample design is presented in Table 3 given $\alpha = 0.01, 0.05$ and $1 - \beta = 0.80, 0.90$. Here, the efficiencies are computed as

$$R_i = \frac{\text{ESS}(\theta_i)}{n_f} \times 100 \quad \text{and} \quad R_0 = \frac{\text{ESS}(\theta_0)}{n_f} \times 100.$$

Therefore, the savings can be defined as

$$S_i = \frac{n_f - \text{ESS}(\theta_i)}{n_f}, \quad i = 0, 1.$$

<table>
<thead>
<tr>
<th>α</th>
<th>$1 - \beta$</th>
<th>R_0</th>
<th>R_1</th>
<th>R_0</th>
<th>R_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.80</td>
<td>60.0</td>
<td>50.0</td>
<td>62.0</td>
<td>75.0</td>
</tr>
<tr>
<td>0.05</td>
<td>0.90</td>
<td>62.0</td>
<td>75.0</td>
<td>67.0</td>
<td>73.0</td>
</tr>
</tbody>
</table>

It is seen that the OR_3 design provides better savings than the fixed sample design for both situations ($w = 0$ and $w = 1$). However, when H_1 is true, the OR_3 design gives much smaller savings.

The expected sample size under the H_0 and H_1 hypothesis for the sequential design of Wald are given approximately by,

$$\text{ESS}_{\text{sprt}}(\theta_0) \Delta^2 = -2[\alpha \ln\left(\frac{1 - \beta}{\alpha}\right) + (1 - \alpha) \ln\left(\frac{\beta}{1 - \alpha}\right)],$$

$$\text{ESS}_{\text{sprt}}(\theta_1) \Delta^2 = 2\beta \ln\left(\frac{\beta}{1 - \alpha}\right) + (1 - \beta) \ln\left(\frac{1 - \beta}{\alpha}\right)],$$

where $\Delta = \frac{\theta_1 - \theta_0}{\sigma}$, [12, 10].

A comparison of these expected sample sizes and the three-stage expected sample sizes is shown in Table 4. Here, relative efficiency is defined as

$$S = \frac{n_f - \text{ESS}_{3}(\theta_i)}{n_f - \text{ESS}_{\text{sprt}}(\theta_i)} \times 100, \quad i = 0, 1$$
Table 4. Efficiency of the OR$_3$ Design compared to the Sequential Design.

<table>
<thead>
<tr>
<th>α</th>
<th>$1 - \beta$</th>
<th>S_0</th>
<th>S_1</th>
<th>S_0</th>
<th>S_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.80</td>
<td>71.8</td>
<td>46.1</td>
<td>69.2</td>
<td>56.0</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>73.8</td>
<td>45.0</td>
<td>67.0</td>
<td>59.6</td>
</tr>
<tr>
<td>0.05</td>
<td>0.80</td>
<td>70.3</td>
<td>52.8</td>
<td>67.8</td>
<td>58.3</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>71.7</td>
<td>55.3</td>
<td>62.6</td>
<td>61.2</td>
</tr>
</tbody>
</table>

From Table 4 it is clear that the OR$_3$ design provides better savings than the sequential design for both situations ($w = 0$ and $w = 1$). While the OR$_2$ design provides a 50% saving compared with the sequential design, the OR$_3$ design provides as much as 70% of the possible savings under H_0 [10].

Finally, Table 5 gives the efficiency of the OR$_3$ design relative to the OR$_2$ design for several α and $1 - \beta$ values. The OR$_2$ design with equal sample sizes at each stage is used for this comparison because this restriction is used in obtaining the three-stage results.

Table 5. Efficiency of the OR$_3$ Design compared to the OR$_2$ Design.

<table>
<thead>
<tr>
<th>α</th>
<th>$1 - \beta$</th>
<th>R_0</th>
<th>R_1</th>
<th>R_0</th>
<th>R_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.80</td>
<td>80.8</td>
<td>97.6</td>
<td>82.3</td>
<td>93.8</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>81.7</td>
<td>97.8</td>
<td>88.2</td>
<td>91.4</td>
</tr>
<tr>
<td>0.05</td>
<td>0.80</td>
<td>86.2</td>
<td>95.2</td>
<td>88.6</td>
<td>93.2</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>88.1</td>
<td>93.3</td>
<td>95.0</td>
<td>91.1</td>
</tr>
</tbody>
</table>

Here, efficiency is defined as

$$R = \frac{\text{ESS}_3(\theta_i)}{\text{ESS}_2(\theta_i)} \times 100, \quad i = 0, 1.$$

It can be seen that little is gained by the addition of a third stage for $w = 0$ and $w = 1$ when H_1 is true. The greatest benefits usually occur when H_0 is true.

Consequently, if we compare the OR$_3$ design with other designs, we can say the OR$_3$ design is preferable in terms of sample size and performance.

References

