GENERALIZED NOTION OF WEAK MODULE AMENABILITY

Abasalt Bodaghi

Received 16:06:2011 : Accepted 28:02:2013

Abstract

In the present paper, we introduce a new notion of weak module amenability for Banach algebras which is related to module homomorphisms. Among other results, we investigate the relationship between this concept for a Banach algebra A which is a Banach A-bimodule with compatible actions, and the quotient Banach algebra A/J where J is the closed ideal of A generated by elements of the form $(a \cdot \alpha)b - a(\alpha \cdot b)$ for $a \in A$ and $\alpha \in A$. We then study this concept for an inverse semigroup S, where some examples on $\ell^1(S)$ and $C^*(S)$ are given.

Keywords: Banach modules; Module derivation; Weak amenability; Weak module amenability; Inverse semigroup.

2000 AMS Classification: 46H25.

1. Introduction

Let S be a (discrete) semigroup. The semigroup algebra $\ell^1(S)$ is the Banach algebra consisting of all absolutely summable complex-valued functions on S, with the convolution product and the ℓ^1-norm; $\|f\|_1 = \sum_{s \in S} |f(s)|$ ($f \in \ell^1(S)$). We will use δ_s to denote the point mass function at s; $\delta_s(t) = 1$ if $t = s$ and $= 0$ elsewhere. Using point masses we may represent a function f on S as $f = \sum_{s \in S} f(s) \delta_s$. Here we recall that an inverse semigroup is a discrete semigroup S such that for each $s \in S$, there is a unique element $s^* \in S$ with $ss^*s = s$ and $s^*ss^* = s^*$. The set of elements of the form s^*s are called idempotents of S and denoted by E.

The concept of amenability for a Banach algebra A was introduced by B. E. Johnson in [18]. A Banach algebra A is amenable if every bounded derivation from A into any dual Banach A-module is inner, equivalently if $H^1(A, X^*) = \{0\}$ for every Banach A-module X, where $H^1(A, X^*)$ is the first Hochschild cohomology group of A with coefficients in X^*, the first dual space of X. Also, a Banach algebra A is weakly amenable if $H^1(A, A^*) = \{0\}$. Bade, Curtis and Dales introduced the notion of weak amenability in [5]. They considered this concept only for commutative Banach algebras. After that

* Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran, Email: abasalt.bodaghi@gmail.com