A NEW SUBCLASS OF HARMONIC MAPPINGS WITH POSITIVE REAL PART

Sibel Yalçı̇n§, Metin Öztürk§ and Mümün Yamankaradeniz§

Received 11.01.2002

Abstract

Complex-valued harmonic functions that are univalent and sense preserving in the unit disk U can be written in the form $f = h + \bar{g}$, where h and g are analytic in U. In this paper, we introduce a class $HP(\beta, \alpha)$, $(\alpha \geq 0, 0 \leq \beta < 1)$ of all functions $f = h + \bar{g}$ for which $\Re \{\alpha z (h'(z) + g'(\bar{z})) + h(z) + g(\bar{z})\} > \beta$, $f(0) = 1$. We give sufficient coefficient conditions for normalized harmonic functions to be in $HP(\beta, \alpha)$. These conditions are also shown to be necessary when the coefficients are negative. This leads to distortion bounds and extreme points.

Key Words: Harmonic mappings, extreme points, distortion bounds.

Mathematics Subject Classification: 30 C 45

1. Introduction

A continuous function $f = u + iv$ is a complex-valued harmonic function in a domain $D \subset \mathbb{C}$ if both u and v are real harmonic in D. In any simply connected domain we can write $f = h + \bar{g}$, where h and g are analytic in D. See Clunie and Sheil-Small [1].

There has been interest [2] in studying the class P_H of all the functions of the form $f = h + \bar{g}$ that are harmonic in $U = \{z : |z| < 1\}$ and such that for $z \in U$, $\Re f(z) > 0$, where

$$h(z) = 1 + \sum_{n=1}^{\infty} a_n z^n \text{ and } g(z) = \sum_{n=1}^{\infty} b_n z^n \tag{1}$$

are analytic in U.

The class $P_H(\beta)$ of all functions of the form (1) with $\Re f(z) > \beta$, $0 \leq \beta < 1$ and $f(0) = 1$ is studied in [4]. Obviously, $P_H(0) = P_H$ and $P_H(\beta) \subset P_H$.

*Uludağ University, Faculty of Science, Department of Mathematics, Bursa, Turkey.
We denote by $HP(\beta, \alpha)$ the class of all functions of the form (1) that satisfy the condition

\[\Re\{az(h(z) + g'(z)) + h(z) + g(z)\} > \beta, \ \alpha \geq 0, \ 0 \leq \beta < 1. \tag{2} \]

Clearly, $HP(0, 0) = P_H$ and $HP(\beta, 0) = P_H(\beta)$. Moreover, if $0 \leq \beta_1 \leq \beta_2 < 1$, then $HP(\beta_2, \alpha) \subset HP(\beta_1, \alpha)$ and if $0 \leq \alpha_1 \leq \alpha_2$, then $HP(\beta, \alpha_2) \subset HP(\beta, \alpha_1)$.

We further denote by $HR(\beta, \alpha)$ the subclass of $HP(\beta, \alpha)$ such that the functions h and g in $f = h + g$ are of the form

\[h(z) = 1 - \sum_{n=1}^{\infty} a_n z^n \]

and

\[g(z) = -\sum_{n=1}^{\infty} b_n z^n \]

with $a_n \geq 0$ and $b_n \geq 0$ for all $n \geq 1$.

2. Main Result

2.1. Theorem: Let $f = h + g$ be given by (1). Furthermore, let

\[\sum_{n=1}^{\infty} \frac{\alpha n + 1}{1 - \beta} (|a_n| + |b_n|) \leq 1 \] \tag{4}

where $\alpha \geq 0$ and $0 \leq \beta < 1$. Then $f \in HP(\beta, \alpha)$.

Proof. We show that the inequality (4) is a sufficient condition for f to be in $HP(\beta, \alpha)$. According to the condition (2) we only need to show that if (4) holds then

\[|1 - \beta + \alpha z(h'(z) + g'(z)) + h(z) + g(z)| - |1 + \beta - \alpha z(h'(z) + g'(z)) - h(z) - g(z)| > 0. \tag{5} \]

Substituting $h(z)$ and $g(z)$ in (5) yields by (4),

\[|1 - \beta + \alpha z(h'(z) + g'(z)) + h(z) + g(z)| - |1 + \beta - \alpha z(h'(z) + g'(z)) - h(z) - g(z)| = \]

\[= 2 - \beta + \sum_{n=1}^{\infty} (\alpha n + 1)(a_n + b_n)z^n - \beta - \sum_{n=1}^{\infty} (\alpha n + 1)(a_n + b_n)z^n \]

\[\geq 2(1 - \beta) - 2 \sum_{n=1}^{\infty} (\alpha n + 1)(|a_n| + |b_n|)|z^n| \]

\[> 2(1 - \beta) \left\{ 1 - \sum_{n=1}^{\infty} \frac{\alpha n + 1}{1 - \beta} (|a_n| + |b_n|) \right\} \geq 0. \tag*{\square} \]

The harmonic mappings

\[f(z) = 1 + \sum_{n=1}^{\infty} \frac{1 - \beta}{\alpha n + 1} (x_n z^n + y_n z^n), \tag{6} \]
A new subclass of Harmonic Mappings

where
\[\sum_{n=1}^{\infty} (|x_n| + |y_n|) = 1, \]
show that the coefficient bound given by (4) is sharp.

The functions of the form (6) are in \(H\hat{P}(\beta, \alpha) \) because
\[\sum_{n=1}^{\infty} \frac{\alpha n + 1}{1 - \beta} (|a_n| + |b_n|) = \sum_{n=1}^{\infty} (|x_n| + |y_n|) = 1. \]

The restriction imposed in Theorem 2.1 on the moduli of the coefficients of \(f = h + \tilde{g} \) enables us to conclude for arbitrary rotation of the coefficients of \(f \) that the resulting functions would still be harmonic and \(f \in H\hat{P}(\beta, \alpha) \). Our next theorem establishes that such coefficient bounds cannot be improved.

2.2. Theorem: Let \(f = h + \tilde{g} \) be given by (3). Then \(f \in H\hat{R}(\beta, \alpha) \) if and only if
\[\sum_{n=1}^{\infty} \frac{\alpha n + 1}{1 - \beta} (|a_n| + |b_n|) \leq 1, \]
where \(\alpha \geq 0 \) and \(0 \leq \beta < 1 \).

Proof. The if part follows from Theorem 2.1 upon noting that if \(f = h + \tilde{g} \in H\hat{P}(\beta, \alpha) \) are of the form (3) then \(f \in H\hat{R}(\beta, \alpha) \).

Suppose that \(f \in H\hat{R}(\beta, \alpha) \). Then we find from (2) that
\[\Re \left\{ 1 - \sum_{n=1}^{\infty} (\alpha n + 1)(a_n + b_n)z^n \right\} > \beta, \ z \in U, \ \alpha \geq 0, \ 0 \leq \beta < 1. \]
If we choose \(z \) to be real and let \(z \to 1^- \), we get
\[1 - \sum_{n=1}^{\infty} (\alpha n + 1)(a_n + b_n) \geq \beta \]
or equivalently,
\[\sum_{n=1}^{\infty} (\alpha n + 1)(a_n + b_n) \leq 1 - \beta, \]
which is precisely the assertion (7) of Theorem 2.2.

2.3. Theorem: If \(f \in H\hat{R}(\beta, \alpha) \), then
\[|f(z)| \leq 1 + \frac{1 - \beta}{1 + \alpha} r, \ |z| < 1 \]
and
\[|f(z)| \geq 1 - \frac{1 - \beta}{1 + \alpha} r, \ |z| < 1. \]
Proof. Let \(f \in HR(\beta, \alpha) \). Taking the absolute value of \(f \) we obtain

\[
|f(z)| \leq 1 + \sum_{n=1}^{\infty} (a_n + b_n)|z|^n \\
\leq 1 + \sum_{n=1}^{\infty} (a_n + b_n)r \\
\leq 1 + \frac{1 - \beta}{1 + \alpha} \sum_{n=1}^{\infty} \frac{\alpha + 1}{1 - \beta} (a_n + b_n)r \\
\leq 1 + \frac{1 - \beta}{1 + \alpha}r,
\]

and

\[
|f(z)| \geq 1 - \sum_{n=1}^{\infty} (a_n + b_n)|z|^n \\
\geq 1 - \sum_{n=1}^{\infty} (a_n + b_n)r \\
\geq 1 - \frac{1 - \beta}{1 + \alpha} \sum_{n=1}^{\infty} \frac{\alpha + 1}{1 - \beta} (a_n + b_n)r \\
\geq 1 - \frac{1 - \beta}{1 + \alpha}r.
\]

The bounds given in Theorem 2.3 for the functions \(f = h + \bar{g} \) of the form (3) also hold for functions of the form (1) if the coefficient condition (4) is satisfied. The functions

\[
f(z) = 1 - \frac{1 - \beta}{1 + \alpha} z \quad \text{and} \quad f(z) = 1 - \frac{1 - \beta}{1 + \alpha} \bar{z}
\]

for \(0 \leq \beta < 1 \) and \(\alpha \geq 0 \) show that the bounds given in Theorem 2.3 are sharp.

The following covering result follows from the second inequality in Theorem 2.3.

2.4. Corollary. If \(f \in HR(\beta, \alpha) \), then

\[
\left\{ w : |w| < \frac{\alpha + \beta}{1 + \alpha} \right\} \subset f(U).
\]

As \(HR(\beta, \alpha) \) is a convex family, \(HR(\beta, \alpha) \) has a non-empty set of extreme points.

2.5. Theorem: Set

\[
h_n(z) = 1 - \frac{1 - \beta}{\alpha n + 1} z^n \quad \text{and} \quad g_n(z) = 1 - \frac{1 - \beta}{\alpha n + 1} z^n, \quad \text{for } n = 1, 2, \ldots
\]

Then \(f \in HR(\beta, \alpha) \) if and only if it can be expressed in the form

\[
f(z) = \sum_{n=1}^{\infty} (\lambda_n h_n + \gamma_n g_n), \quad (8)
\]
where \(\lambda_n \geq 0, \gamma_n \geq 0 \) and \(\sum_{n=1}^{\infty} (\lambda_n + \gamma_n) = 1 \).

In particular, the extreme points of \(HR(\beta, \alpha) \) are \(\{h_n\} \) and \(\{g_n\} \).

Proof. For functions \(f \) of the form (8) we have

\[
f(z) = \sum_{n=1}^{\infty} (\lambda_n h_n + \gamma_n g_n) = 1 - \sum_{n=1}^{\infty} \frac{1 - \beta}{\alpha n + 1} (\lambda_n z^n + \gamma_n \bar{z}^n).
\]

Then

\[
\sum_{n=1}^{\infty} \frac{\alpha n + 1}{1 - \beta} \left[\frac{1 - \beta}{\alpha n + 1} (\lambda_n + \gamma_n) \right] = \sum_{n=1}^{\infty} (\lambda_n + \gamma_n) = 1
\]

and so \(f \in HR(\beta, \alpha) \).

Conversely, suppose that \(f \in HR(\beta, \alpha) \). Set

\[
\lambda_n = \frac{\alpha n + 1}{1 - \beta} a_n \quad \text{and} \quad \gamma_n = \frac{\alpha n + 1}{1 - \beta} b_n, \quad \text{for} \quad n = 1, 2, \ldots.
\]

Then by Theorem 2.2, \(0 \leq \lambda_n \leq 1 \) and \(0 \leq \gamma_n \leq 1 \), \((n = 1, 2, \ldots) \). Consequently, we obtain

\[
f(z) = \sum_{n=1}^{\infty} (\lambda_n h_n + \gamma_n g_n),
\]

as required. \(\square \)

Following Ruscheweyh [3], we call the set

\[
N_\delta(f) = \left\{ F : F(z) = 1 - \sum_{n=1}^{\infty} (|A_n|z^n + |B_n|z^n) \quad \text{and} \quad \sum_{n=1}^{\infty} n(|a_n - A_n| + |b_n - B_n|) \leq \delta \right\}.
\]

the \(\delta \)-neighborhood of \(f \in P_H \). In particular, for the constant function \(I(z) = 1 \), we immediately have

\[
N_\delta(I) = \left\{ f : f(z) = 1 - \sum_{n=1}^{\infty} (|a_n|z^n + |b_n|z^n) \quad \text{and} \quad \sum_{n=1}^{\infty} n(|a_n| + |b_n|) \leq \delta \right\}.
\]

2.6. Theorem: Let \(\delta = (1 - \beta)/\alpha \). Then \(HR(\beta, \alpha) \subset N_\delta(I) \).

Proof. Let \(f \) belong to \(HR(\beta, \alpha) \). We have

\[
\sum_{n=1}^{\infty} n(a_n + b_n) = \frac{1}{\alpha} \sum_{n=1}^{\infty} \alpha n(a_n + b_n)
\]

\[
\leq \frac{1}{\alpha} \sum_{n=1}^{\infty} (\alpha n + 1)(a_n + b_n)
\]

\[
\leq \frac{1}{\alpha} (1 - \beta) = \delta.
\]

Hence \(f(z) \in N_\delta(I) \). \(\square \)
References

