SOME RESULTS RELATED TO A CERTAIN VECTOR FIELD SATISFYING THE LOCAL MÖBIUS EQUATION

Nebi Önder

Received 15:03:2007 : Accepted 13:11:2007

Abstract

In this paper we prove some results related to a certain vector field satisfying the local Möbius equation on vector fields.

Keywords: Second covariant differential, Divergence, Laplacian, Conformal vector field, Affine conformal vector field, k-nullity vector field, Möbius equation.

1. Introduction

A vector field Z on a Riemannian manifold (M, g) is said to satisfy the local Möbius equation if

$$(\nabla^2 Z)(X, Y) = g(\Delta Z, X)Y$$

for all vector fields X, Y.

It is known that the existence of solutions Z to the local Möbius equation is related to the conformal structure of the manifold, since the divergence $\text{div} Z$ is a solution of the local Möbius equation, i.e.

$$\text{Hess}_{\text{div}} Z = \frac{\nabla \text{div} Z}{n} \text{Id}$$

and moreover, in such cases $\nabla \text{div} Z$ is a conformal vector field, since $L_{\nabla \text{div} Z} = 2 \text{Hess}_{\text{div}} Z$.

(See also the first four in references.)

The purpose of this paper is to point out such a connection by considering the vector field Z itself. We prove the following:

(Theorem 3.4). A nonzero solution Z of the local Möbius equation is conformal, provided that M is compact.

Department of Mathematics, Faculty of Science and Letters, Mimar Sinan G.S. University, Çiğdem Sokak, No: 1, Beşiktaş, 34349 Istanbul, Turkey.
E-mail: zafernebi@hotmail.com