ON ONE WEIGHTED INEQUALITIES FOR CONVOLUTION TYPE OPERATOR

R. A. Bandaliev *

Received 26/09/2011 : Accepted 14/04/2012

Abstract

In this paper we prove the boundedness of certain convolution operator in a weighted Lebesgue space with kernel satisfying the generalized Hörmander’s condition. The sufficient conditions for the pair of general weights ensuring the validity of two-weight inequalities of a strong type and of a weak type for convolution operator with kernel satisfying the generalized Hörmander’s condition are found.

Keywords: Weighted Lebesgue space, Singular integral, Kernel, Generalized Hörmander’s condition, Boundedness.

2000 AMS Classification: 42B20, 42B25, 46B50

1. Introduction.

Let \mathbb{R}^n be n-dimensional Euclidean spaces of points $x = (x_1, \ldots, x_n)$, where $n \in \mathbb{N}$ and $\mathbb{R}^n_0 = \mathbb{R}^n \setminus \{0\}$. Suppose that ω is a non-negative, Lebesgue measurable and real function defined on \mathbb{R}^n, i.e., ω is a weight function defined on \mathbb{R}^n. By $L_{p,\omega}(\mathbb{R}^n)$ we denote the weighted Lebesgue space of measurable functions f on \mathbb{R}^n such that

$$
\|f\|_{L_{p,\omega}(\mathbb{R}^n)} = \|f\|_{p,\omega} = \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(x) \, dx\right)^{1/p} < \infty, \quad 1 \leq p < \infty.
$$

In the case $p = \infty$, the norm on the space $L_{\infty,\omega}(\mathbb{R}^n)$ is defined as

$$
\|f\|_{L_{\infty,\omega}(\mathbb{R}^n)} = \|f\|_{\infty} = \text{ess sup}_{x \in \mathbb{R}^n} |f(x)|.
$$

For $\omega = 1$ we obtain the nonweighted L_p spaces, i.e., $\|f\|_{L_{p,1}(\mathbb{R}^n)} = \|f\|_{L_p(\mathbb{R}^n)} = \|f\|_p$.

Our aim in this paper is to show the boundedness of certain convolution operator in a weighted Lebesgue space with kernel satisfying the generalized Hörmander’s condition.

E-mail: bandaliyev.rovshan@math.ab.az