On groups with relatively small normalizers of nonprimary subgroups

Vladimir Antonov

Abstract

We consider the structure of a finite nonsolvable group \(G \) in which for any nonprimary subgroup \(A \) the index \(|N_G(A) : A \cdot C_G(A)|\) is equal unit or a prime number.

Keywords: finite group, subgroup, normalizer, centralizer.

If \(A \) is an arbitrary subgroup of a group \(G \), then \(N(A) \geq A \cdot C(A) \), and the index \(|N(A) : A \cdot C(A)|\) equals to the order of a subgroup of \(\text{Out}(A) \), which is induced by elements of \(G \). In this paper we consider the structure of finite groups \(G \) in which for any nonprimary subgroup \(A \) the index \(|N(A) : A \cdot C(A)|\) is a divisor of a certain prime number, i.e., it is equal to 1 or a prime number. We’ll call these groups \(NP \)-groups.

Note that any subgroup and factor-group of a \(NP \)-group is also a \(NP \)-group.

The aim of this article is to describe the structure of nonsolvable \(NP \)-groups.

1.1. Lemma. If a nonsolvable \(NP \)-group \(G \) is a central product of two subgroups \(G_1 \) and \(G_2 \), then one of the factors is abelian.

Proof. Suppose that \(G_1 \) is nonabelian. Then ([1], Corollary of Lemma 2) there exists a subgroup \(A \) of \(G_1 \) such that \(|N_{G_1}(A) : A \cdot C_{G_1}(A)| = p \) for a prime \(p \). If \(A \) is nonprimary and \(B \) is an arbitrary subgroup of \(G_2 \), then from the fact that \(|N(AB) : AB \cdot C(AB)|\) divides a prime number, it follows that \(N_{G_2}(B) = B \cdot C_{G_2}(B) \). Then \(G_2 \) is abelian (see [1]). If \(A \) is primary and \(|A| = q^n \) for a prime \(q \), then the equality \(N_{G_2}(B) = B \cdot C_{G_2}(B) \) holds for any \(q' \)-subgroup \(B \) of \(G_2 \). By Lemma 4 from [1], \(G_2 = Q \times H \), where \(H \) is an abelian Hall \(q' \)-subgroup of \(G_2 \), i.e. \(G_2 \) is solvable. If \(G_2 \) is nonabelian, then for any \(q' \)-subgroup \(A \) of \(G_1 \), the equality \(|N_{G_1}(A) : A \cdot C_{G_1}(A)| \) holds too. But then the group \(G_1 \) is also solvable, which is impossible.

1.2. Lemma. If \(Q \) is a Sylow \(q \)-subgroup of a \(NP \)-group \(G \), \(C(Q) \leq Q \) and \(N(Q) = (Q \times \langle a \rangle) \times \langle b \rangle \), where \(a \neq 1 \neq b \), then \(a \) and \(b \) are elements of prime orders, and if \(N(Q) = Q \times \langle x \rangle \), then \(|x| \) is the product of no more than two prime factors.

*South Ural State University, Chelyabinsk, Russia Email: antonova@susu.ac.ru
Proof. In the first case, if we let \(A = Q \triangleleft \langle a \rangle \), we get that \(|b| = |N(A) : A \cdot C(A)| \) is a prime. And supposing \(A = Q \triangleleft \langle c \rangle \), where \(c \) is an element of prime order \(r \) from \(\langle a \rangle \), then from the equality \(|N(A) : A \cdot C(A)| = \frac{|a|}{r} |b| \) we get that \(|a| = r \). In second case, it’s sufficient to choose a subgroup \(A = Q \triangleleft \langle y \rangle \), where \(y \) is an element of prime order from \(\langle x \rangle \).

Later on we will repeatedly use Frattini’s argument ([7], theorem 1.3.7): if \(H < G \) and \(P \) is a Sylow \(p \)-subgroup of \(H \), then \(G = H \cdot N(P) \). In a solvable group all Hall \(\pi \)-subgroups are conjugate. Therefore a similar proposition is true in a case where \(P \) is a Hall \(\pi \)-subgroup of a solvable group \(H \). We will call this Frattini’s argument as well.

1.3. Theorem. A finite nonabelian simple group \(G \) is a \(NP \)-group if and only if \(G \) satisfies one of the following conditions:

1. \(G \cong PSL(2,q^n) \), \(\frac{q^n-1}{(2,q^n-1)} \) is either a prime or a product of two primes;
2. \(G \cong PSU(3,2^n) \), and either \(n = 2 \) or each of the numbers \(2^n - 1 \) and \(2^n + 1 \) are primes;
3. \(G \cong Sz(2^n) \), \(n \in \{3, 5\} \).

Proof. Necessity. Let \(G \) be a finite nonabelian simple \(NP \)-group. It is known that any nonabelian simple group is either an alternating group, a Lie type group, or a sporadic simple group.

First, assume that \(G \cong A_n \). If \(n = 5 \), then \(G \cong PSL(2,4) \), and if \(n = 6 \), then \(G \cong PSL(2,9) \). If, however, \(n > 6 \) then \(G \) contains a subgroup which is isomorphic to \(A_7 \). Let \(G = A_7 \), \(a = (1 2)(3 4) \), \(b = (1 3)(2 4) \), \(c = (5 6 7) \), \(x = (1 2)(5 6) \), \(y = (1 2 3) \) and \(A = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \). Then \(C(A) = A \) and \(N(A) = A \cdot (\langle y \rangle \cdot \langle x \rangle) \), i.e. \(|N(A) : A \cdot C(A)| = 6 \), which is impossible.

Now let \(G \) be a simple Lie type group over the Galois field \(GF(q^n) \), where \(q \) is a prime. Suppose that the Lie rank of \(G \) is more than 2. If \(\mathcal{J} \) is a parabolic subgroup of \(G \), corresponding to two nonadjoint nodes of the Dynkin diagram of \(G \), then ([4], Proposition 2.17) \(\mathcal{J} = J/O_q(J) = (\mathcal{Y}_1 \times \mathcal{Y}_2) \cdot \mathcal{P} \), where \(\mathcal{Y}_1 \) and \(\mathcal{Y}_2 \) are Lie type groups of Lie rank 1 over \(GF(q^n) \) and \(H \) is a Cartan subgroup of \(G \). By Lemma 1.1 each of \(\mathcal{Y}_i \) is a solvable group. Since ([4], Theorem 2.13) solvable Lie type groups are either \(A_2(2) \), \(A_1(3) \), \(2A_2(2) \) or \(2B_2(2) \), so \(q^n \in \{2, 3\} \). Let \(p_i \in \pi(\mathcal{Y}_i) \setminus \{q\} \). \(\mathcal{A}_i \) and \(\mathcal{A}_2 \) be Sylow \(p_i \)- and \(p_2 \)-subgroup from \(\mathcal{Y}_1 \) and \(\mathcal{Y}_2 \), respectively, then for the nonprimary subgroup \(A = A_1 \cdot A_2 \) the index \(|N(A) : A \cdot C(A)| \) is divisible by \(q^2 \), which is impossible.

Therefore \(l \leq 2 \). Let \(l = 2 \), i.e., \(G \) is isomorphic to one of the groups \(A_2(q^n) \), \(B_2(q^n) \), \(2A_3(q^n) \), \(2A_4(q^n) \), \(3D_4(q^n) \), \(2F_4(2^{2n+1}) \), \(n > 0 \), \((2^{2n}(2))' \).

First suppose that the Cartan subgroup \(H \) of the group \(G \) is trivial. The group \((2^{2n}(2))' \) contains a subgroup \(K \) isomorphic to \(PSL(2,25) \), which is not \(NP \)-group, because it has a Cartan subgroup of order 12, which contradicts Lemma 1.2. Because of this, \(G \) is a group of classical type over the field \(GF(2) \), i.e., either \(G \cong A_2(2) = PSL(3,2) \), or \(G \cong B_2(2) = PSp(4,2) \). It’s left to be noticed that \(PSL(3,2) \cong PSL(2,7) \), and that the group \(PSp(4,2) \cong S_6 \) is not simple.

Therefore \(H \neq 1 \). Let \(J \) be a proper parabolic subgroup of \(G \). Then \(\mathcal{J} = J/O_q(J) = \mathcal{Y} \cdot \mathcal{P} \), where \(\mathcal{Y} \) is a Lie type group of Lie rank 1. If \(G \cong 2F_4(2^{2n+1}) \), \(n > 0 \), then subgroup \(J \) can be chosen so that \(\mathcal{Y} \cong 2B_2(2^{2n+1}) \), and if \(\mathcal{A} \) is a
If $q^n = 2$ and \overline{A} is a subgroup of order 3 of \overline{Y}, then by Frattini’s argument we assume that $H \leq N(\overline{A})$ which also leads to a contradiction. However, if $q^n \neq 2$, then as \overline{A} we can take a Cartan subgroup of \overline{Y}.

Therefore $t = 1$. If Q is a Sylow q-subgroup of G, then $C(Q) \leq Q$ and $N(Q) = Q \times H$, where H is a Cartan subgroup of G. From the definition of an NP-group and the fact that H is abelian, one of the following is true: $|H| = 1$, $|H|$ is a prime number or $|H| = pr$ where p and r are primes. Since group $A_1(2)$ is solvable, then the first case is impossible.

First, suppose that G is a twisted group. Let $G \cong 2A_2(q^n) = PSU(3, q^{2n})$. Then $|H| = \frac{q^{2n} - 1}{q^n - 1} = (q^n - 1) \cdot \frac{q^n + 1}{q^n - 1}$. If $q > 2$ then $|H|$ is divisible by 8, which is impossible. Therefore $q = 2$ and all of the numbers $(2^n - 1)$ and $\frac{2^n + 1}{3}$ are primes. The primarity of $(2^n - 1)$ implies that either $n = 2$ or n is an odd number and then $(2^n + 1, 3) = 3$, i.e., G is a group of type 2) from this Theorem.

The group $2B_2(2^{n+1})$ contains, as subgroups, the Frobenius groups of orders $(2^{2n+1} - 2n + 1) \cdot 4$. Therefore each of the numbers $2^{2n+1} + 2n + 1$ and $2^{2n+1} - 2n + 1$ must be powers of the primes. Because their product is equal $(2^{2n+1} + 1$ it is divisible by 5. But then either $2^{2n+1} + 2n + 1 = 5^n$, or $2^{2n+1} - 2n + 1 = 5^n$ for some number m.

Consider the first case. If $2^{2n+1} + 2n + 1 = 5^n$, then either $n = 4t + 1$ or $n = 4t - 1$ for some $t > 0$. Since $2^t + 2^t + 1 = 145 \neq 5^m$, then $n \geq 4$ in any case. Let $m = 2^k r$, where r is an odd number. Then from

$$2^{n+1}(2^n + 1) = 5^m - 1 = 2^{k+2} \cdot \frac{5^r - 1}{4} \prod_{i=0}^{k-1} \frac{5^{2^r} + 1}{2}$$

it follows that $k = n - 1 \geq 3$. But the inequality

$$\prod_{i=0}^{k-1} \frac{5^{2^r} + 1}{2} > 2^{k+1} + 1 = 2^n + 1$$

is true for $k \geq 3$, which is impossible.

If, however, $2^{2n+1} - 2n + 1 = 5^n$, then either $n = 4t + 1$ or $n = 4t + 2$ for some $t \geq 0$. The equality

$$2^{n+1}(2^n - 1) = 5^m - 1 = 2^{k+2} \cdot \frac{5^r - 1}{4} \prod_{i=0}^{k-1} \frac{5^{2^r} + 1}{2}$$

implies $k = n - 1$. If $k > 1$ then from $k \in \{4t, 4t + 1\}$ it follows that $k \geq 4$ and we have the contradiction again. Therefore, $k \in \{0, 1\}$ and, consequently, $n \in \{1, 2\}$, i.e., G is a group of the type 3) from this Theorem.

Let $G \cong 2G_2(3^{2n+1})$. Since the group $2G_2(3)$ is nonsimple, then $n > 0$. In this case (see [8]) G has a subgroup H such that $H = (V_4 \times D) \rtimes \langle b \rangle$, where
For a is an element of order $2^{2n+1}q^n$ from D, then the subgroup $A = V_4 \times \langle a \rangle$ is nonprimary and $|N_H(A) : A \cdot C_H(A)| = 6$, which is impossible.

Now suppose that G is a classical non-twisted group of Lie type rank 1, i.e., $G \cong A_1(q^n) \cong PSL(2, q^n)$. In this case $|H| = \frac{q^n-1}{(2,q^n-1)}$. Because of this a^{q^n-1} is either a prime, or a product of two primes, i.e., G is a group of the type 1 from this Theorem.

Now using the survey [10] we can show that G cannot be a sporadic simple group. To demonstrate this, it’s sufficient to show that any sporadic simple group contains a subgroup, which is not NP-group. Let G_p denote a Sylow p-subgroup of G for a prime p.

1) In the group M_{11} the subgroup G_3 is self-centralizing and its normaliser has a form $N(G_3) = G_3 \times K$, where K is isomorphic to the semi-dihedral group of order 16, again contrary with Lemma 1.2.

2) M_{12}, M_{23}, M_{24}, Co_3, Suz and McL contain M_{11}.

3) M_{22} and M_{24} contain A_7, F_{22} contains S_{10}, and F_{23} and F_{24} contain S_{12}.

4) The group $O'N$ contains J_1, and in the group J_1 the subgroup $N(G_3)$ is a direct product of two dihedral groups of orders 6 and 10. If A is a subgroup from $N(G_3)$ of order 15, then $|N(A) : A \cdot C(A)|$ is divisible by 4.

5) In the group J_2 we have $N(G_3) = G_3 \times \langle a \rangle$, where $C(G_3) = G_3$ and $|a| = 8$.

6) In the groups J_3 and He the subgroup $N(G_{17})$ is a Frobenius group of order 17 · 8; in J_4 and Co_2 the subgroup $N(G_{29})$ is a Frobenius group of order 29 · 28, again contrary to Lemma 1.2 and Co_1 and F_2 contain Co_2.

7) The group F_3 contains an involution τ such that $C(\tau)/O_2(C(\tau)) \cong C_2$.

8) In the groups L_3 and F_3 the subgroups $N(G_{37})$ and $N(G_{19})$ are Frobenius groups of orders 37 · 18 and 19 · 14, respectively.

9) The group F_5 contains HS, and in the group HS the subgroup $N(G_3)$ is isomorphic to $S_3 \times S_5$, and if $A_3 \times A_5 \cong A \leq N(G_3)$, then $|N(A) : A \cdot C(A)|$ is divisible by 4.

10) The group Ru contains an involution τ such that $C(\tau) \cong V_4 \times S_2(8)$, and if $A \cong V_4 \times H$, where H is a subgroup of order 5 from $S_2(8)$, then $|N(A) : A \cdot C(A)|$ is divisible by 4.

Sufficiency. If A is a proper nonprimary subgroup of G, then $N(A) < G$. Therefore, it is sufficient to prove, that any maximal subgroup of G is a NP-group.

Suppose first that $G \cong PSL(2, q^n)$, where q is a prime. Since $\frac{q^{2n}-1}{(2,q^n-1)}$ is either a prime or a product of two primes, then, it is not difficult to see, that either $n = 1$ or $q \in \{2, 3\}$ and n is either a prime or the square of a prime (odd, if $q = 3$). From Dickson’s Theorem ([6], Theorem 2.8.27) it follows that the maximal subgroups of G are the groups from the following list: $N(Q) = Q \times \langle a \rangle$, where Q is a Sylow q-subgroup of G, $|a| = \frac{q^n-1}{(2,q^n-1)}$; the dihedral groups of the orders $2 \cdot \frac{q^n+1}{(2,q^n-1)}$, S_4 for $q^n \equiv \pm 1(8)$, A_4 for $q^n \equiv \pm 3(8)$, A_5 for $q^n \equiv \pm 1(10)$; $PSL(2, q^n)$ for $n = p^2$.

It’s not difficult to check that all these groups are NP-groups.

If $G \cong PSU(3, 2^{2n})$, then since $(2^{2n}-1)$ is a prime, n is a prime too. From [5] it follows that the maximal subgroups of G are the groups of the following...
Theorem 1.3. Let G be a nonsolvable nonsimple NP-group. Then one of the following holds:

1) subgroup $F = F^*$ is a nontrivial p-group for some prime p, and $G/F \cong PSL(2, 4)$;
2) $G \cong Aut(PSL(2, 2^n))$, $n \in \{2, 3\}$;
3) $G = Z(G) \cdot L$, $L \cong PSL(2, q^n)$ or $SL(2, q^n)$, the number $\frac{q^{n-1}}{(2, q^{n-1})}$ is a prime, and if $n = 1$ then either $q \neq \pm 1(8)$ or $Z(G)$ is a 2-group;
4) $G = Z(G) \times L$ and either $L \cong PSL(2, q^n)$, $\frac{q^{n-1}}{(2, q^{n-1})}$ is a product of the two prime numbers and $Z(G)$ is a q-group, or $Z(G)$ is a 2-group and $L \cong PSU(2, 2^n)$ is a group from Theorem 1.3;
5) $G = Z(G) \cdot L$, $Z(G)$ is a 3-group and L is isomorphic to the covering group for $PSL(2, 9)$ with $|Z(L)| = 3$.

Proof. Let G be a group satisfying conditions of this Theorem. Let's assume first that $F = F^*$. Then $C(F) \leq F$. If F is a normal subgroup, then $|G : F|$ is a prime and G is a solvable group. Therefore, F is a p-group for some prime p. Moreover, if A/F is a p'-subgroup of G/F, then $|N(A) : A|$ divides a prime number.

Let $G/F \cong SL(2, 2^n)$. Then G_1 is a non-nilpotent group, and consequently, is nonprimary. Therefore $|G : G_1|$ is a divisor of a prime. Assume that $G_1 = G_1$. Then G/F is a simple NP-group. i.e., a group from Theorem 1.3.

Let $G/F \cong PSU(3, 2^n)$. If $p \neq 2$ and A/F is a Sylow 2-subgroup of G/F, then A is nonprimary, and $|N(A) : A \cdot C(A)| = \frac{2^n-1}{(3, 2^n-1)}$ is not a prime. Therefore $p = 2$. Then (4, p.166), for subgroup H/F of order $\frac{2^n-1}{(3, 2^n-1)}$ from $N_{G/F}(A/F)$ the equality $C_{G/F}(H/F) = H/F \times L/F$, where $L/F \cong PSL(2, 2^n)$, is true. Therefore, for the nonprimary subgroup H, the index $|N(H) : H \cdot C(H)|$ divides by $|L/F|$, which is impossible.

In the case $G/F \cong Sz(8)$, a Sylow 2-subgroup of G/F has the order 2^6. Hence $p = 2$. If A/F is a subgroup of order 5 from G/F, then $|N(A) : A| = 4$, which is impossible. If $G/F \cong Sz(2^2)$, then by analogy $p = 2$ and if A/F is a subgroup of order 25, then $|N(A) : A| = 4$.

Therefore, $G/F \cong PSL(2, q^n)$. If $q \neq p$ and Q/F is a Sylow q-subgroup of G/F, then Q is nonprimary and the primarity of the number $|N_{G/F}(Q/F) : Q/F|$ is impossible.
implies that \(\frac{q^n - 1}{(2, q^n - 1)} \) is a prime. If \(aF \) is an element of order \(q \) from \(Q/F \) then the index \(|N(a, F) : \langle a, F \rangle| \) divides a prime number and, therefore, \(n \leq 2 \).

If \(n = 2 \) then from the primarity of \(\frac{q^n - 1}{(2, q^n - 1)} \) we get that \(q = 2 \), i.e. \(G/F \cong PSL(2, 4) \). Let \(n = 1 \). Since the groups \(PSL(2, 2) \) and \(PSL(2, 3) \) are solvable, and \(PSL(2, 5) \cong PSL(2, 4) \) then we can suppose that \(q > 5 \). Let \(A/F \) is a subgroup of the prime order \(r \), where \(r \) divides \(\frac{q^n - 1}{2} \). If \(r \neq p \) then the primarity of \(|N(A) : A| = 2 \cdot \frac{q^n - 1}{2r} \) implies \(r = \frac{q^n - 1}{2} \). But the numbers \(\frac{q^n - 1}{2} \) and \(\frac{q^n + 1}{2} \) are primes at the same time only when \(q = 5 \). Suppose now that \(r = p \). Then by the arbitrariness of \(r \), the equation \(\frac{q^n - 1}{2} = p^k \) is solvable. Since \(q > 5 \) then the prime number \(\frac{q^n - 1}{2} \) is odd. But then \(q + 1 \) is divisible by 4. i.e. \(p = 2 \). Since one of the numbers, either \(k \) or \(k + 1 \), is even, then the numbers \(q = 2^{k+1} - 1 \) and \(\frac{q^n - 1}{2} = 2k - 1 \) cannot both be prime at the same time.

Assume now that \(q = p \) and \(aF \) is an element of prime order from a subgroup of order \(\frac{q^n \pm 1}{2(q^n - 1)} \) from \(G/F \). Because \(N_{G/F}(\langle aF \rangle) \) is isomorphic to the dihedral group of order \(\frac{q^n \pm 1}{2(q^n - 1)} \cdot 2 \), and \(|N(\langle a, F \rangle) : \langle a, F \rangle| = \) a prime, then the numbers \(\frac{q^n \pm 1}{2(q^n - 1)} \) are primes. If \(q \) is odd, then \(q^n = 5 \). But \(PSL(2, 5) \cong PSL(2, 4) \). If \(q = 2 \), then because \((2^n - 1) \) is a prime it follows that \(n \) is a prime. But then in the case \(n > 2 \) the number \(2^n + 1 \) is not prime. Therefore, \(G/F \cong PSL(2, 4) \).

Suppose now that \(G_1 < G \). Then, by using what’s already been proved, \(G_1/F \cong PSL(2, 4) \) and \(G/F = (G_1/F) \rtimes \langle aF \rangle \), where \(aF \) is an automorphism of the group \(G_1/F \). Let \(A/F \) be a subgroup of order 5 from \(G_1/F \). By Frattini’s argument we can assume that \(aF \in N_{G/F}(A/F) \). But then \(|N(A) : A \cdot C(A)| \) is divisible by 4.

Therefore, if \(F = F^* \), then by the theorem conditions, \(G \) is of type 1). Because of this, we’ll further assume that \(F < F^* \). Then \(F^* = F \cdot L \), when \(L \) is the layer of the group \(G \). By Lemma 1.1, the subgroup \(F \) is abelian and \(F^* \) is a simple group, i.e., a group from Theorem 1.3. Moreover, one of the following holds: \(F = 1 \), \(G = F^* \) or \(1 < F < F^* < G \).

In the first case \(F^* \) is a group from Theorem 1.3 and \(F^* < G \leq \text{Aut}(F^*) \). From the definition of the \(NP \)-group it follows that \(|G/F^*| \) is a prime. The structure of the automorphism groups of Lie type groups (e.g. [4], theorem 4.238) implies that in our case \(G = F^* \rtimes \langle a \rangle \), \(a \) is a prime order automorphism of group \(F^* \). Set \(|a| = p \).

First assume that \(F^* \cong PSL(2, q^n) \). Let \(Q \) be a Sylow \(q \)-subgroup of \(F^* \) and \(B = Q \rtimes H \) be a Borel subgroup of group \(F^* \). By Frattini’s argument we can assume that \(a \in N(Q) \). But then \(a \in N(N_{R^*}(Q)) = N(B) \). Since \(C(Q) \leq Q \) and \(|N(Q) : Q| = |H| : p \), then, by Lemma 1.2, the number \(|H| = \frac{q^n - 1}{(2, q^n - 1)} \) must be a prime number. But then, as it was noted in the proof of Theorem 1.3, either \(q \in \{2, 3\} \), or \(n = 1 \). By analogy, for a subgroup \(A \) of order \(\frac{q^n + 1}{2(q^n - 1)} \) from \(F^* \) the equality \(|N(A) : A \cdot C(A)| = 2p \) implies that subgroup \(A \) must be a primary group.

Let \(q = 2 \). The primarity of the number \((2^n - 1) \) implies that \(n \) is a prime. If \(n > 2 \), then \(2^n + 1 \) is divisible by 3 and, consequently, \(2^n + 1 = 3^k \) for a number \(k \). Let \(k > 2 \). If \(k = 2r \) is even, then \(2^n = 3^k - 1 = (3^r - 1)(3^r + 1) \), which is impossible. However, if \(k = 2r + 1 \), then \(3^k - 1 = 2(1 + 3^2 + \cdots + 3^{2r}) \neq 2^n \).
where the second factor is odd. Therefor, if \(q = 2 \), then the group \(F^* \) is isomorphic to one of the groups \(PSL(2,4) \) or \(PSL(2,8) \).

If \(q = 3 \) then the primarity of the number \(\frac{3^n-1}{2} \) implies that \(n \) is an odd prime. However, from that fact that \(\frac{3^n+1}{2} \) is even and prime it follows that \(\frac{3^n+1}{2} = 2^k \), i.e., \(3^n = 2^{k+1} - 1 \) for a number \(k \). Since the number \(\frac{3^n-1}{2} = 2^k - 1 \) is prime, then \(k \) is an odd prime. But then \(k+1 = 2r \) and \(3^n = (2^r - 1)(2^r + 1) \), which is impossible for \(r > 1 \). However if \(r = 1 \), then \(k = 1 \). But then \(n = 1 \) as well, which contradicts the primarity of the group \(F^* \).

Finally, let \(q \) and \(\frac{q+1}{2} \) be primes. If \(q = 5 \), then \(F^* \cong PSL(2,4) \). However if \(q > 5 \), then \(\frac{q-1}{2} \) is odd. Because \(\frac{q+1}{2} \) is primary, we obtain that \(\frac{q+1}{2} = 2^k \), i.e. \(q = 2^{k+1} - 1 \). But then \(\frac{q+1}{2} = 2^k - 1 \). Since one of the numbers \(k \), \(k+1 \) is even, and \(k > 2 \), then the numbers \((2^k - 1) \) and \((2^{k+1} - 1) \) can’t both be prime simultaneously.

Suppose now that \(F^* \cong PSU(3,2^{2n}) \). If \(p \neq 2 \) and \(A \) is a Sylow 2-subgroup of \(F^* \), then \(|N(A) : A \cdot C(A)| = p \cdot (2^n - 1) \cdot \frac{2^n+1}{(3^2+1)} \), which is impossible. However, if \(p = 2 \) and \(H \) is a Cartan subgroup of \(F^* \), then \(H \) is nonprimary and \(|N(H) : H \cdot C(H)| = 4 \).

If \(F^* \cong Sz(2^3) \) or \(Sz(2^5) \) and \(A \) is a subgroup of order 5 or 25 of \(F^* \), respectively, then \(|N(A) : A| = 4p \), which contradicts Lemma 1.2.

Therefore, if \(F = 1 \), then \(G \) is of type 2) from this Theorem.

Consider the case when \(G = F^* \), i.e., \(G = F \cdot L \), where \(L \) is the layer of the group \(G \). By Lemma 1.1, the subgroup \(F \) is abelian, i.e., \(F = Z(G) \), and \(L \) is a quasi simple group. Since the group \(G \) isn’t simple, then \(F \neq 1 \). If \(F \) is nonprimary, then the index \(|N_L(A) : A \cdot C_L(A)| \) divides a prime for any subgroup \(A \subseteq L \). By theorem 4 from [2] \(L \cong PSL(2, q^n) \) or \(SL(2, q^n) \), the number \(\frac{q^n-1}{1} \) is a prime and if \(n = 1 \), then \(q \neq 1(8) \), i.e., \(G \) is of type 3) from this Theorem.

Now suppose that \(F \) is a \(p \)-group for a prime \(p \). Since the Schur multiplier of group \(Sz(2^3) \) is trivial then either \(L \) is a group from Theorem 1.3 or \(L \) is isomorphic to a covering of group \(PSL(2, q^n) \), \(Sz(8) \) or \(PSU(3,2^{2n}) \).

Let \(L/Z(L) \cong Sz(8) \). Then \(L/Z(L) \) contains the subgroups \(A_1/Z(L) \) and \(A_2/Z(L) \) of order 5 and 13, respectively, such that \(|N_L(A_1) : A_1 \cdot C_L(A_1)| = 4 \). Since \(p \) isn’t at least one of the numbers 5 or 13, then supposing \(A = F \cdot A_1 \), we get a contradiction with the definition of \(NP \)-group. If \(L \cong Sz(2^9) \) then subgroups of order 25 and 41 should be taken as subgroups \(A_1 \) and \(A_2 \) in the group \(G \).

Therefore, we can assume that \(L/Z(L) \cong PSL(2, q^n) \) or \(PSU(3,2^{2n}) \).

First, assume that \(Z(L) = 1 \), i.e., \(G = Z(G) \times L \). If \(L \cong PSL(2, q^n) \) and \(p \neq q \), then the number \(\frac{q^n-1}{(2q^n-1)} \) should be prime. Moreover, if \(n = 1 \) and \(q \equiv \pm 1(8) \), then \(L/Z(L) \) contains a subgroup \(H/Z(L) \cong S_4 \). If \(V/Z(L) \) is a four-group from \(H/Z(L) \), then the equality \(|N_{H/Z(L)}(V/Z(L)) : V/Z(L)| = 6 \) implies that in this case subgroup \(V \) is primary, i.e., \(p = 2 \). However, if \(p = q \), then the number \(\frac{q^n-1}{(2q^n-1)} \) could be the product of two primes. But, if \(q^n \equiv \pm 1(8) \), then checking a four-group \(V/Z(L) \) again, we get that \(p = 2 \). But then \(q^n = 2^n \neq \pm 1(8) \). If, however \(L/Z(L) \cong PSU(3,2^{2n}) \) and \(p \neq 2 \), then for a Sylow 2-subgroup \(A \) of \(L \), the subgroup \(A \cdot Z(L) \) is nonprimary and again we get a contradiction with the definition of \(NP \)-group.
Now suppose that $Z(L) \neq 1$. Since the Schur multiplier is trivial for groups $PSL(2,2^n)$ when $n > 2$, we can assume that in the case of $L/Z(L) \cong PSL(2,q^n)$ the number q is odd. Then the order of the Schur multiplier is equal to 2 (i.e. $L \cong SL(2,q^n)$) for $q^n \neq 9$ and 6 for $q^n = 9$. Consider the second case. If $[Z(L)]$ is divisible by 2 and $Q/Z(L)$ is a Sylow 3-subgroup of the group $L/Z(L)$, then the subgroup Q is nonprimary and $|N(Q) : Q \cdot C(Q)| = 4$, which is impossible. Hence, when $q^n = 9$ the order of $Z(L)$ is equal to 3. In the case of $L/Z(L) \cong PSL(3,2^n)$ the Schur multiplier order is equal to 3, and if $A/Z(L)$ is a Sylow 2-subgroup of $L/Z(L)$, then subgroup A is nonprimary and $|N_L(A) : A \cdot C_L(A)|$ is not a prime.

Therefore, if $G = F^*$ then G is a group of type 3) or 5) from this Theorem. Finally, consider the case when $1 < F \leq F^* < G$. Then, by using what’s already been proved, F^* is a group of type 3) or 4), while G/F is a group of type 2) from this Theorem. Let $G = F^* \cdot \langle a \rangle, a^p \in F^*$. If A/F is a Sylow q-subgroup from F^*/F, then the fact that $|N(A) : A \cdot C(A)|$ is divisible by p implies that subgroup A/F is a Cartan subgroup of group F^*/F, which is impossible. Hence, for the nonprimary subgroup H, the index $|N(H) : H \cdot C(H)|$ is divisible by $2p$, which is impossible.

\[\square\]

1.5. Note. It isn’t difficult to see that the groups type 2) and 5) of Theorem 1.4 are NP-groups. For type 1) groups, the proof of the sufficiency requires the fulfillment of a number of additional restrictions. Let’s note some of them.

Let t be a p'-element from G, A be a t-invariant subgroup from F and $H = F \cdot \langle t \rangle$. Then the index $|N_H(A \cdot \langle t \rangle) : (A \cdot \langle t \rangle) \cdot C_H(A \cdot \langle t \rangle)|$ divides p. Looking at the intersections of these subgroups with F and taking into account that $N_F(A \cdot \langle t \rangle) = A \cdot (N_F(A) \cap C(t))$, we get that

\[|A \cdot (N_F(A) \cap C(t)) : A \cdot (C_H(A) \cap C(t))| = |N_F(A) \cap C(t) : (C_H(A) \cap C(t)) \cdot (A \cap C(t))|,
\]

i.e., $|C_{N_F(A)}(t) : C_A(t) \cdot C_{CF(A)}(t)|$ divides p.

Let $N_{G/F}(\langle tF \rangle) = \langle tF \rangle \cdot \langle hF \rangle$ and A be a $\langle t, h \rangle$-invariant subgroup from F. Since $h \in N(A \cdot \langle t \rangle)$, then in the same notation $N_H(A \cdot \langle t \rangle) = (A \cdot \langle t \rangle) \cdot C_H(t)$. But then $C_{N_F(A)}(t) = C_A(t) \cdot C_{CF(A)}(t)$. Since the subgroup $N_F(A)$ is also $\langle t, h \rangle$-invariant, then

\[C_{N_F(N_F(A))}(t) = (N_F(A) \cap C(t)) \cdot C_{CF(N_F(A))}(t) = C_A(t) \cdot C_{CF(A)}(t).
\]

Continuing this process and taking into account that F satisfies the normaliser conditions, we get the equality $C_F(t) = C_A(t) \cdot C_{CF(A)}(t)$.

Supposing that in this equation $A = [F,a]$ and taking into account that $F = [F,a] \cdot C_F(a)$, we get that $C_F(a) = C_{[F,a]}(a) \cdot C_{CF([F,a])}(a)$, i.e., $F = [F,a] \cdot C_F([F,a])$.

By analogy we can prove, that if $p \neq 2$ and $\langle aF \rangle \cdot \langle bF \rangle \cdot \langle cF \rangle$ is a subgroup of order 12 from G/F and subgroup $A \leq F$ is $\langle a, b, c \rangle$-invariant, then $C_F(\langle a, b \rangle) = C_A(\langle a, b \rangle) \cdot C_{CF(A)}(\langle a, b \rangle)$ and $F = [F,\langle a, b \rangle] \cdot C_F([F,\langle a, b \rangle])$.

Note that all these properties hold if subgroup F is abelian, i.e., in this case G is a NP-group.
References