SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS

B. A. Frasin∗

Received 13 : 10 : 2004 : Accepted 17 : 11 : 2005

Abstract

Recently, Jahangiri [4] studied the harmonic starlike functions of order \(\alpha \), and he defined the class \(T_{\alpha}(\alpha) \) consisting of functions \(f = h + \bar{g} \), where \(h \) and \(g \) are the analytic and the co-analytic part of the function \(f \), respectively. In [3] the author introduced the class \(T_{\alpha}(\alpha, \beta) \) of analytic functions and he proved various coefficient inequalities and growth and distortion theorems, and obtained the radius of convexity for the function \(h \) if the function \(f \) belongs to the classes \(T_{\alpha}(\alpha) \) and \(T_{\alpha}(\alpha, \beta) \). In this paper, we derive various distortion theorems for the fractional calculus and the fractional integral operator of the function \(h \), the analytic part of the function \(f \), if the function \(f \) belongs to the class \(T_{\alpha}(\alpha, \beta) \).

Keywords: Harmonic, Analytic and univalent functions. Fractional calculus and fractional integral operator.

2000 AMS Classification: 30 C 45.

1. Introduction and Definitions

A continuous complex valued function \(f = u + iv \) defined in a simply connected complex domain \(\mathcal{D} \) is said to be harmonic in \(\mathcal{D} \) if both \(u \) and \(v \) are real harmonic in \(\mathcal{D} \). In any simply connected domain we can write \(f = h + g \), where \(h \) and \(g \) are analytic in \(\mathcal{D} \). We call \(h \) the analytic part and \(g \) the co-analytic part of \(f \). A necessary and sufficient condition for \(f \) to be locally univalent and sense preserving in \(\mathcal{D} \) is that \(|h'(z)| > |g'(z)| \) in \(\mathcal{D} \).

∗Department of Mathematics, Al al-Bayt University, P.O. Box: 130095, Mafraq, Jordan. E-mail: bafrasin@yahoo.com URL: http://www.geocities.com/bafrasin/techie.html