Signed degree sequences in signed multipartite graphs

S. Pirzada* and T. A. Naikoo†

Abstract
A signed k-partite graph (signed multipartite graph) is a k-partite graph in which each edge is assigned a positive or a negative sign. If $G(V_1, V_2, \ldots, V_k)$ is a signed k-partite graph with $V_i = \{v_{i1}, v_{i2}, \ldots, v_{in_i}\}$, $1 \leq i \leq k$, the signed degree of v_{ij} is $sdeg(v_{ij}) = d_{ij} = d^+_i - d^-_i$, where $1 \leq i \leq k$, $1 \leq j \leq n_i$, and $d^+_i(d^-_i)$ is the number of positive (negative) edges incident with v_{ij}. The sequences $\sigma_i = [d_{i1}, d_{i2}, \ldots, d_{in_i}]$, $1 \leq i \leq k$, are called the signed degree sequences of $G(V_1, V_2, \ldots, V_k)$. The set of distinct signed degrees of the vertices in a signed k-partite graph $G(V_1, V_2, \ldots, V_k)$ is called its signed degree set. In this paper, we characterize signed degree sequences of signed k-partite graphs. Also, we give the existence of signed k-partite graphs with given signed degree sets.

Keywords: Signed graphs, signed multipartite graph, signed degree, signed set.

2000 AMS Classification: 05C22.

Received 17/09/2011 : Accepted 24/06/2014 Doi: 10.15672/HJMS.2015449661

1. Introduction

A signed graph is a graph in which each edge is assigned a positive or a negative sign. The concept of signed graphs is given by Harary [3]. Let G be a signed graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$. The signed degree of v_i is $sdeg(v_i) = d_i = d^+_i - d^-_i$, where $1 \leq i \leq n$ and $d^+_i(d^-_i)$ is the number of positive (negative) edges incident with v_i. A signed degree sequence $\sigma = [d_1, d_2, \ldots, d_n]$ of a signed graph G is formed by listing the vertex signed degrees in non-increasing order. An integral sequence is s-graphical if it is the signed degree sequence of a signed graph. Also, a non-zero sequence $\sigma = [d_1, d_2, \ldots, d_n]$ is a standard sequence if σ is non-increasing, $\sum_{i=1}^{n} d_i$ is even, $d_1 > 0$, each $|d_i| < n$ and

*Department of Mathematics, University of Kashmir, Srinagar, Kashmir, India
Email: sdpirzada@yahoo.co.in; pizradaas0kashmiruniversity.ac.in
†Department of Mathematics, Islamia College for Science and Commerce, Srinagar, Kashmir, India
Email: tariqnaikoo@yahoo.co.in
Theorem 3. Let \(\alpha = [d_1, d_2, \ldots, d_p] \) and \(\beta = [e_1, e_2, \ldots, e_q] \) be standard sequences. Then, \(\alpha \) and \(\beta \) are the signed degree sequences of a signed bipartite graph if and only if there exist integers \(r \) and \(s \) with \(d_1 = r - s \) and \(0 \leq s \leq \frac{q - d_1}{2} \) such that \(\alpha' \) and \(\beta' \) are the signed degree sequences of a signed bipartite graph, where \(\alpha' \) is obtained from \(\alpha \) by deleting \(d_1 \) and \(\beta' \) is obtained from \(\beta \) by reducing \(r \) greatest entries of \(\beta \) by 1 each and adding \(s \) least entries of \(\beta \) by 1 each.
Further, so that each edge is assigned a positive or a negative sign. Let $sdeg(v_{ij}) = d_{ij} = d_{ij}^+ - d_{ij}^-$, where $1 \leq i \leq k$, $1 \leq j \leq n_i$ and d_{ij}^+ (d_{ij}^-) is the number of positive (negative) edges incident with v_{ij}. The sequences $\alpha_i = [d_{11}, d_{22}, \cdots, d_{in_i}]$, $1 \leq i \leq k$, are called the signed degree sequences of $G(V_1, V_2, \cdots, V_k)$. Also the sequences $\alpha_i = [d_{11}, d_{22}, \cdots, d_{in_i}]$, $1 \leq i \leq k$, of integers are s-graphical if α_i's are the signed degree sequences of some signed k-partite graph. Denote a positive edge xy by xy^+ and a negative edge xy by xy^-. Several results on signed degree sequences in signed multipartite graphs can be found in [9]. We start with the following observation.

Theorem 4. Let $G(V_1, V_2, \cdots, V_k)$ be a signed k-partite graph with $V_i = \{v_{i1}, v_{i2}, \cdots, v_{in_i}\}$, $1 \leq i \leq k$ and having q edges. Then

$$p = \sum_{i=1}^k \sum_{j=1}^{n_i} s \deg(v_{ij}) \equiv 2q \pmod{4},$$

and the number of positive edges and negative edges of $G(V_1, V_2, \cdots, V_k)$ are respectively $\frac{2q}{2} = \frac{2p}{2}$ and $\frac{2q}{2} = \frac{2p}{2}$.

Proof. Let v_{ij} ($1 \leq i \leq k$, $1 \leq j \leq n_i$) be incident with d_{ij}^+ positive edges and d_{ij}^- negative edges so that

$$sdeg(v_{ij}) = d_{ij}^+ - d_{ij}^- \text{ while } \deg(v_{ij}) = d_{ij}^+ + d_{ij}^-.$$

Obviously, $\sum_{i=1}^k \sum_{j=1}^{n_i} \deg(v_{ij}) = 2q$.

Let $G(V_1, V_2, \cdots, V_k)$ have q positive edges and h negative edges. Then $q = g + h$, $\sum_{i=1}^k \sum_{j=1}^{n_i} d_{ij}^+ = 2g$ and $\sum_{i=1}^k \sum_{j=1}^{n_i} d_{ij}^- = 2h$.

Further,

$$\sum_{i=1}^k \sum_{j=1}^{n_i} \deg(v_{ij}) = \sum_{i=1}^k \sum_{j=1}^{n_i} (d_{ij}^+ - d_{ij}^-)$$

$$= \sum_{i=1}^k \sum_{j=1}^{n_i} d_{ij}^+ - \sum_{i=1}^k \sum_{j=1}^{n_i} d_{ij}^-$$

$$= 2g - 2h.$$

Hence,

$$p = \sum_{i=1}^k \sum_{j=1}^{n_i} s \deg(v_{ij}) \equiv 2g - 2h$$

$$= 2(q - h) - 2h$$

$$= 2q - 4h,$$

so that $p \equiv 2q \pmod{4}$. Again, from $g + h = q$ and $2g - 2h = p$, we have $g = \frac{2q + p}{4}$ and $h = \frac{2q - p}{4}$. □
Corollary 5. A necessary condition for the k sequences $\alpha_i = [d_{i1}, d_{i2}, \ldots, d_{in}]$, $1 \leq i \leq k$, of integers to be s-graphical is that $\sum_{i=1}^{k} \sum_{j=1}^{n} d_{ij}$ is even.

A zero sequence is a finite sequence each term of which is 0. Clearly, every k finite zero sequences are the signed degree sequences of a signed k-partite graph. If $\beta = [a_1, a_2, \ldots, a_n]$ is a sequence of integers, then the negative of β is the sequence $\beta = [-a_1, -a_2, \ldots, -a_n]$.

The next result follows by interchanging positive edges with negative edges.

Theorem 6. The sequences $\alpha_i = [d_{i1}, d_{i2}, \ldots, d_{in}]$, $1 \leq i \leq k$, are the signed degree sequences of some signed k-partite graph if and only if $-\alpha_i = [-d_{i1}, -d_{i2}, \ldots, -d_{in}]$ are the signed degree sequences of some signed k-partite graph.

Assume without loss of generality, that a non-zero sequence $\beta = [a_1, a_2, \ldots, a_n]$ is non-increasing and $|a_1| \geq |a_n|$, we can always replace β by $-\beta$ if necessary. The next result follows by interchanging positive edges with negative edges.

Theorem 7. Let $\alpha_i = [d_{i1}, d_{i2}, \ldots, d_{in}]$, $1 \leq i \leq k$, be standard sequences and let $r = \frac{1}{2} \left(d_{i1} + \sum_{j=2}^{k} n_j \right)$. Let α'_i be obtained from α_i by deleting d_{i1} and $\alpha'_2, \alpha'_3, \ldots, \alpha'_k$ be obtained from $\alpha_2, \alpha_3, \ldots, \alpha_k$ by reducing r greatest entries of $\alpha_2, \alpha_3, \ldots, \alpha_k$ by 1 each and adding remaining entries of $\alpha_2, \alpha_3, \ldots, \alpha_k$ by 1 each. Then α_i are the signed degree sequences of some complete signed k-partite graph if and only if α'_i are also signed degree sequences of some complete signed k-partite graph, $1 \leq i \leq k$.

Proof. Let $G'(V'_2, V'_3, \ldots, V'_k)$ be a complete signed k-partite graph with signed degree sequences α'_i, $1 \leq i \leq k$. Let $V'_2 = \{v_{12}, v_{13}, \ldots, v_{1n_1}\}$ and $V'_i = \{v_{i2}, v_{i3}, \ldots, v_{in_i}\}$, $2 \leq i \leq k$. Then a complete signed k-partite graph with signed degree sequences α_i, $1 \leq i \leq k$, can be obtained by adding a vertex v_{i1} to V'_i so that there are r positive edges from v_{i1} to those r vertices of V'_2, V'_3, \ldots, V'_i, whose signed degrees were reduced by 1 in going from α_i to α'_i, and there are negative edges from v_{i1} to the remaining vertices of V'_2, V'_3, \ldots, V'_k, whose signed degrees were increased by 1 in going from α_i to α'_i. Note that the signed degree of v_{i1} is $r - \left(\sum_{j=2}^{k} n_j - r \right) = 2r - \sum_{j=2}^{k} n_j = d_{i1}$.

Conversely, let α_i, $1 \leq i \leq k$, be the signed degree sequences of a complete signed k-partite graph. Let the vertex sets of the complete signed k-partite graph be $V_i = \{v_{i1}, v_{i2}, \ldots, v_{in_i}\}$ such that $sdeg(v_{ij}) = d_{ij}$, $1 \leq i \leq k$, $1 \leq j \leq n_i$.

Among all the complete signed k-partite graphs with α_i, $1 \leq i \leq k$, as the signed degree sequences, let $G(V_1, V_2, \ldots, V_k)$ be one with the property that the sum S of the signed degrees of the vertices V_2, V_3, \ldots, V_k joined to v_{i1} by positive edges is maximum. Let d_{11}^+ and d_{11}^- be respectively the number of positive edges and the number of negative edges incident with v_{i1}. Then $sdeg(v_{i1}) = d_{11} = d_{11}^+ - d_{11}^-$, $deg(v_{i1}) = d_{11}^+ + d_{11}^- = \sum_{j=2}^{k} n_j$, and hence $d_{11}^- = \frac{1}{2} \left(d_{11} + \sum_{j=2}^{k} n_j \right) = r$. Let U be the set of r
vertices of \(V_2, V_3, \ldots, V_k\) with highest signed degrees and let \(W = \bigcup_{j=2}^{k} V_j - U\). We claim that \(v_{11}\) must be joined by positive edges to the vertices of \(U\). If this is not true, then there exist vertices \(v_{gh} \in U\) and \(v_{ij} \in W\) such that the edge \(v_{11}v_{gh}\) is negative and the edge \(v_{11}v_{ij}\) is positive. Since \(sdeg(v_{gh}) \geq sdeg(v_{ij})\), there exist vertices \(v_{mn}\) and \(v_{pq}\) such that the edge \(v_{gh}v_{mn}\) is positive and the edge \(v_{ij}v_{pq}\) is negative. If the edge \(v_{gh}v_{pq}\) is positive, then change the signs of the edges \(v_{11}v_{gh}, v_{gh}v_{pq}, v_{pq}v_{ij}, v_{ij}v_{11}\) so that the edges \(v_{11}v_{gh}\) and \(v_{pq}v_{ij}\) are positive and the edges \(v_{11}v_{ij}\) and \(v_{gh}v_{pq}\) are negative. But if the edge \(v_{gh}v_{pq}\) is negative, then \(sdeg(v_{gh}) < sdeg(v_{ij})\), which is a contradiction. The case when \(v_{mn} = v_{pq}\) follows by the same argument as in above.

Hence we obtain a complete signed \(k\)-partite graph with signed degree sequences \(\alpha_i, 1 \leq i \leq k\), in which the sum of the signed degrees of the vertices of \(V_2, V_3, \ldots, V_k\) joined to \(v_{11}\) by positive edges exceeds \(S\), a contradiction.

Thus we may assume that \(v_{11}\) is joined by positive edges to the vertices of \(U\) and by negative edges to the vertices of \(W\). So \(G(V_1, V_2, \ldots, V_k) - v_{11}\) is a complete signed \(k\)-partite graph with \(\alpha'_i, 1 \leq i \leq k\), as the signed degree sequences. \(\square\)

Theorem 7 provides an algorithm of checking whether the standard sequences \(\alpha_i, 1 \leq i \leq k\), are the signed degree sequences, and for constructing a corresponding complete signed \(k\)-partite graph. Suppose \(\alpha_i = [d_{i1}, d_{i2}, \ldots, d_{in_i}], 1 \leq i \leq k\), be the standard signed degree sequences of a complete signed \(k\)-partite graph with parts \(V_i = \{v_{1i}, v_{2i}, \ldots, v_{ni}\}\). Deleting \(d_{11}\) and reducing \(r = \frac{1}{2}\left(d_{11} + \sum_{j=2}^{n} n_j\right)\) greatest entries of \(\alpha_2, \alpha_3, \ldots, \alpha_k\) by 1 each and adding remaining entries of \(\alpha_2, \alpha_3, \ldots, \alpha_k\) by 1 each to form \(\alpha'_2, \alpha'_3, \ldots, \alpha'_k\). Then edges are defined by \(v_{11} v_{ij}'\) if \(d_{ij}'s\) are reduced by 1 and \(v_{11} v_{ij}\) if \(d_{ij}'s\) are increased by 1. For \(-\alpha_i, 1 \leq i \leq k\), edges are defined by \(v_{11} v_{ij}'\) if \(d_{ij}'s\) are reduced by 1 and \(v_{11} v_{ij}\) if \(d_{ij}'s\) are increased by 1. If the conditions of standard sequences do not hold, then we delete \(d_{11}\) for that \(i\) for which the conditions of standard sequences get satisfied. If this method is applied recursively, then a complete signed \(k\)-partite graph with signed degree sequences \(\alpha_i, 1 \leq i \leq k\), is constructed.

The next result gives necessary and sufficient conditions for the \(k\) sequences of integers to be the signed degree sequences of some signed \(k\)-partite graph.

Theorem 8. Let \(\alpha_i = [d_{i1}, d_{i2}, \ldots, d_{in_i}], 1 \leq i \leq k\), be standard sequences. Then \(\alpha_i, 1 \leq i \leq k\), are the signed degree sequences of a signed \(k\)-partite graph if and only if there exist integers \(r\) and \(s\) with \(d_{11} = r - s\) and \(0 \leq s \leq \frac{1}{2}\left(\sum_{j=2}^{k} n_j - d_{11}\right)\) such that \(\alpha'_i\) are the signed degree sequences of a signed \(k\)-partite graph, where \(\alpha'_i\) is obtained from \(\alpha_i\) by deleting \(d_{11}\) and \(\alpha'_2, \alpha'_3, \ldots, \alpha'_k\) are obtained from \(\alpha_2, \alpha_3, \ldots, \alpha_k\) by reducing \(r\) greatest entries of \(\alpha_2, \alpha_3, \ldots, \alpha_k\) by 1 each and adding \(s\) least entries of \(\alpha_2, \alpha_3, \ldots, \alpha_k\) by 1 each.

Proof. Let \(r\) and \(s\) be integers with \(d_{11} = r - s\) and \(0 \leq s \leq \frac{1}{2}\left(\sum_{j=2}^{k} n_j - d_{11}\right)\) such that \(\alpha'_i, 1 \leq i \leq k\), are the signed degree sequences of a signed \(k\)-partite graph \(G'\)

\[V'_1, V'_2, \ldots, V'_k\).

Let \(V'_1 = \{v_{11}, v_{21}, \ldots, v_{n_1}\}\) and \(V'_2 = \{v_{12}, v_{22}, \ldots, v_{n_2}\}\), \(2 \leq i \leq k\). Let \(U\) be the set of \(r\) vertices of \(V'_2, V'_3, \ldots, V'_k\) with highest signed degrees, \(W\) be the set of \(s\) vertices of \(V'_2, V'_3, \ldots, V'_k\) with least signed degrees and let \(Z = \bigcup_{j=2}^{k} V'_j - U - W\). Then a signed \(k\)-partite graph with signed degree sequences \(\alpha_i, 1 \leq i \leq k\), can be obtained by adding a vertex \(v_{11}\) to \(V'_1\) so that there are \(r\) positive edges from \(v_{11}\) to the vertices of \(U\) and \(s\) negative edges from \(v_{11}\) to the vertices of \(W\). Note that the signed degree of \(v_{11}\) is \(r - s = d_{11}\).

Conversely, let \(\alpha_i, 1 \leq i \leq k\), be the signed degree sequences of a signed \(k\)-partite
graph. Let the vertex sets of the signed k-partite graph be $V_i = \{v_{i1}, v_{i2}, \ldots, v_{in_i}\}$ such that $sdeg(v_{ij}) = d_{ij}, 1 \leq i \leq k, 1 \leq j \leq n_i$.

Among all the signed k-partite graphs with α_i, $1 \leq i \leq k$, as the signed degree sequences, let $G(V_1, V_2, \ldots, V_k)$ be one with the property that the sum S of the signed degrees of the vertices of V_2, V_3, \ldots, V_k joined to v_{11} by positive edges is maximum. Let $d_{11}^+ = r$ and $d_{11}^- = s$ be respectively the number of positive edges and the number of negative edges incident with v_{11}. Then $sdeg(v_{11}) = d_{11}^- = d_{11}^+ - d_{11}^+ = r - s$ and $deg(v_{11}) = d_{11}^+ + d_{11}^- = r + s \leq \sum_{j=2}^{k} n_j$, and hence $0 \leq s \leq \frac{1}{2} \left(\sum_{j=2}^{k} n_j - d_{11}^- \right)$. Let U be the set of r vertices of V_2, V_3, \ldots, V_k with highest signed degrees and let $W = \bigcup_{j=2}^{k} V_j - U$.

We claim that v_{11} must be joined by positive edges to the vertices of U. If this is not true, then there exist vertices $v_{gh} \in U$ and $v_{mn} \in W$ such that the edge $v_{11}v_{mn}$ is positive and either (i) $v_{11}v_{gh}$ is a negative edge or (ii) v_{11} and v_{gh} are not adjacent in $G(V_1, V_2, \ldots, V_k)$. As $sdeg(v_{gh}) \geq sdeg(v_{mn})$, that is $d_{gh} \geq d_{mn}$, therefore we consider only (i) and then (ii) is similar to (i).

We note that if there exists a vertex $v_{pq} (\neq v_{11})$ such that $v_{pq}v_{gh}$ is a positive edge and $v_{pq}v_{mn}$ is a negative edge, then change the signs of these edges so that $v_{11}v_{gh}$ and $v_{pq}v_{mn}$ are positive, and $v_{11}v_{mn}$ and $v_{pq}v_{gh}$ are negative. Hence we obtain a signed k-partite graph with signed degree sequences $\alpha_i, 1 \leq i \leq k$, in which the sum of the signed degrees of the vertices of V_2, V_3, \ldots, V_k joined to v_{11} by positive edges exceeds S, a contradiction. So assume that no such vertex v_{pq} exists.

Now, suppose that v_{gh} is not incident to any positive edge. Since $sdeg(v_{gh}) \geq sdeg(v_{mn})$, that is $d_{gh} \geq d_{mn}$, then there exist at least two vertices v_{pq} and v_{lt} (both distinct from v_{11}) such that $v_{pq}v_{mn}$ and $v_{lt}v_{mn}$ are negative edges and both v_{pq} and v_{lt} are not adjacent to v_{gh}. Then by changing the edges so that $v_{11}v_{pq}$ is a positive edge, and $v_{11}v_{mn}, v_{gh}v_{pq}, v_{gh}v_{lt}$ are negative edges, we again get a contradiction. Hence v_{gh} is incident to at least one positive edge.

We claim that there exists at least one vertex v_{xy} such that $v_{yx}v_{xy}$ is a positive edge and v_{yx} is not adjacent to v_{mn}. Suppose on contrary that whenever v_{xy} is joined to a vertex by a positive edge, then v_{mn} is also joined to this vertex by a positive edge. Since $sdeg(v_{xy}) \geq sdeg(v_{mn})$, that is $d_{xy} \geq d_{mn}$, then again we have the same situation as above, from which we get a contradiction. Thus there exists a vertex v_{pq} such that $v_{pq}v_{xy}$ is a positive edge and v_{pq} is not adjacent to v_{mn}. Similarly, it can be shown that there exists a vertex v_{pq} such that $v_{pq}v_{mn}$ is a negative edge and v_{pq} is not adjacent to v_{gh}. By changing the edges so that $v_{11}v_{gh}v_{mn}v_{xy}$ are positive edges, and $v_{11}v_{mn}, v_{gh}v_{pq}$ are negative edges, we again get a contradiction. Hence v_{11} is joined by positive edges to the vertex of U.

In a similar way, it can be shown that v_{11} is joined by negative edge to the s vertices of V_2, V_3, \ldots, V_k with least signed degrees.

Hence $G(V_1, V_2, \ldots, V_k) - v_{11}$ is a signed k-partite graph with $\alpha_i', 1 \leq i \leq k$, as the signed degree sequences. \square

Theorem 8 also provides an algorithm for determining whether or not the standard sequences $\alpha_i, 1 \leq i \leq k$, are the signed degree sequences, and for constructing a corresponding signed k-partite graph. Suppose $\alpha_i = [d_{i1}, d_{i2}, \ldots, d_{in_i}], 1 \leq i \leq k$, be the standard signed degree sequences of a signed k-partite graph with parts $V_i = \{v_{i1}, v_{i2}, \ldots, v_{in_i}\}$. Let $d_{11} = r - s$ and $0 \leq s \leq \frac{1}{2} \left(\sum_{j=2}^{k} n_j - d_{11}^- \right)$. Deleting d_{11} and reducing r greatest entries of $\alpha_2, \alpha_3, \ldots, \alpha_k$ by 1 each and adding s least entries of $\alpha_2, \alpha_3, \ldots, \alpha_k$ by 1 each to form $\alpha_2', \alpha_3', \ldots, \alpha_k'$. Then edges are defined by $v_{11}v_{ij}$ if $d_{ij}' > s$ are reduced by 1; $v_{11}v_{ij}$ if $d_{ij}' > s$ are increased by 1, and v_{11} and v_{ij} are not adjacent if d_{ij}' are unchanged. For α_i, edges are defined by $v_{11}v_{ij}$ if $d_{ij}' > s$ are reduced by 1; $v_{11}v_{ij}$ if $d_{ij}' > s$ are increased by
1, and \(v_{i1} \) and \(v_{ij} \) are not adjacent if \(d'_{ij} \) s are unchanged. If the conditions of standard sequences do not hold, then we delete \(d_{i1} \) for that \(i \) for which the conditions of standard sequences get satisfied. If this method is applied recursively, then a signed \(k \)-partite graph with signed degree sequences \(\alpha_i \), \(1 \leq i \leq k \), is constructed.

3. Signed degree sets in signed \(k \)-partite graphs

Let \(G(V_1, V_2, \cdots, V_k) \) be a signed \(k \)-partite graph with \(X \subseteq V_i, Y \subseteq V_j \) \((i \neq j)\). If each vertex of \(G \) is joined to every vertex of \(Y \) by a positive (negative) edge, then it is denoted by \(X \ominus Y \). The set \(S \) of distinct signed degrees of the vertices in a signed \(k \)-partite graph \(G(V_1, V_2, \cdots, V_k) \) is called its signed degree set. Also, a signed \(k \)-partite graph \(G(V_1, V_2, \cdots, V_k) \) is said to be connected if each vertex \(v_i \in V_i \) is connected to every vertex \(v_j \in V_j \).

The following result shows that every set of positive integers is a signed degree set of some connected signed \(k \)-partite graph.

Theorem 9. Let \(d_1, d_2, \cdots, d_t \) be positive integers. Then there exists a connected signed \(k \)-partite graph with signed degree set

\[
S = \{ d_1, \sum_{i=1}^{2} d_i, \cdots, \sum_{i=1}^{t} d_i \}.
\]

Proof. We consider the following two cases. (i) \(k \) even, (ii) \(k \) odd.

Case (i). Let \(k = 2m \), where \(m \geq 1 \). Construct a signed \(k \)-partite graph \(G(V_1, V_2, \cdots, V_{2m}) \) as follows.

Let

\[
V_1 = P_1 \cup Q_1 \cup R_1 \cup S_1 \cup X_1' \cup X_1'' \cup X_1''' \cup X_2' \cup X_2'' \cup \cdots \cup X_{m-1}, V_{2m} = P_{2m} \cup Q_{2m},
\]

where

(a) \(P_1, Q_1, R_1, S_1, X_1', X_1'', X_1''', X_1'''', \cdots, X_{m-1} \) are pairwise disjoint,
(b) \(P_1, Q_2, R_2, S_2, Y_1', Y_1'', Y_1''', Y_{m-1}', Y_{m-1}'' \) are pairwise disjoint,
(c) For all \(i \), \(P_1 \cap Q_i = \phi, 3 \leq i \leq 2m \) and \(|P_1| = |Q_i| = d_1, 1 \leq i \leq 2m \); \(|R_i| = |S_i| = d_1, 1 \leq i \leq t - 1 \); \(|X_i'| = |Y_i'| = d_1, 1 \leq i \leq t - 1 \); \(|X_i''| = d_2 + d_3 + \cdots + d_{i+1}, 1 \leq i \leq t - 1 \).

For all \(i \), let \(P_1 \cap Q_{i+1}, 1 \leq i \leq 2m - 1 \); \(Q_1 \cap P_{i+1}, 1 \leq i \leq 2m - 1 \); \(Q_1 \cap R_2, R_1 \cap Q_2, R_1 \cap S_2, S_1 \cap R_2, X_1 \cap S_2, X_1' \cap R_2, X_1' \cap Y_1', 1 \leq i \leq t - 1 ; X_1'' \cap Y_1, 1 \leq i \leq t - 1 \); \(X_1''' \cap Y_1', 1 \leq i \leq t - 1 \); \(X_1'''', X_1'''' \cap Y_1', 1 \leq i \leq t - 1 \); \(X_1'''' \cap Y_1', 1 \leq i \leq t - 1 \); \(X_1'''' \cap Y_{m-1}', 2 \leq i \leq t - 1 \); \(X_1''' \cap Y_{m-1}, 2 \leq i \leq t - 1 \); \(X_1'' \cap Y_{m-1}, 2 \leq i \leq t - 1 \); \(X_1' \cap Y_{m-1}', 2 \leq i \leq t - 1 \).

Then the signed degrees of the vertices of \(G(V_1, V_2, \cdots, V_{2m}) \) are as follows.
Every set of negative integers is a signed degree set of some connected signed k-partite graph.
Theorem 11. Every set of the integers is a signed degree set of some connected signed k-partite graph.

Proof. Let S be a set of integers. Then we have the following five cases.

Case (i). S is a set of positive (negative) integers. Then the result follows by Theorem 9 (Corollary 10).

Case (ii). $S = \{0\}$. Then a signed k-partite graph $G(V_1, V_2, \cdots, V_k)$ with $V_i = \{v_i, v_i'\}$ for all i, $1 \leq i \leq k$, in which $v_i v_{i+1}$, $v_i' v_{i+1}$ for all i, $1 \leq i \leq k-1$, are positive edges and $v_i v_{i+1}$, $v_i' v_{i+1}$ for all i, $1 \leq i \leq k-1$, are negative edges has signed degree set S.

Case (iii). S is a set of non-negative (non-positive) integers. Let $S = S' \cup \{0\}$, where S' be a set of positive (negative) integers. Then by Theorem 9 (Corollary 10), there is a connected signed k-partite graph $G'(V_1', V_2', \cdots, V_k')$ with signed degree set S'. Construct a new signed k-partite graph $G(V_1, V_2, \cdots, V_k)$ as follows.

Let $V_1 = V_1' \cup \{x_1\} \cup \{y_1\}$, $V_2 = V_2' \cup \{x_2\} \cup \{y_2\}$, $V_3 = V_3'$, \ldots, $V_k = V_k'$, with $V_i \cap \{x_1\} = \phi, V_i \cap \{y_1\} = \phi, V_i \cap \{x_2\} = \phi, V_i \cap \{y_2\} = \phi, \{x_2\} \cap \{y_2\} = \phi, \{x_1\} \cap \{y_1\} = \phi$.

Let $v_1 x_1 v_2 y_2, y_1 v_2$ be positive edges, $v_1 y_2$, $x_1 y_2$ be negative edges, where $v_1 \in V_1'$, $v_2 \in V_2'$ and let there be all the edges of $G'(V'_1, V'_2, \cdots, V'_k)$. Then $G(V_1, V_2, \cdots, V_k)$ has signed degree set S. We note that addition of the positive edges $v_1 x_1, v_2 y_2, y_1 v_2$ and negative edges $v_1 y_2, x_1 y_2, y_1 v_2$ do not effect the signed degrees of the vertices of $G'(V'_1, V'_2, \cdots, V'_k)$, and the vertices x_1, y_1, x_2, y_2 have signed degree zero each.

Case (iv). S is a set of non-zero integers. Let $S = S' \cup S''$, where S' and S'' are sets of positive and negative integers respectively. Then by Theorem 9 (Corollary 10), there are connected signed k-partite graphs $G'(V_1', V_2', \cdots, V_k')$ and $G''(V_1'', V_2'', \cdots, V_k'')$ with signed degree sets S' and S'' respectively. Suppose $G'_1(V_{11}', V_{21}', \cdots, V_{k1}')$ and $G''_2(V_{12}'', V_{22}'', \cdots, V_{k2}'')$ are the copies of $G'(V_1', V_2', \cdots, V_k')$ and $G''(V_1'', V_2'', \cdots, V_k'')$, with signed degree sets S' and S'' respectively. Construct a new signed k-partite graph $G(V_1, V_2, \cdots, V_k)$ as follows.

Let

\begin{align*}
V_1 &= V_1' \cup V_{11}' \cup V_{12}' \cup V_{12}'', \\
V_2 &= V_2' \cup V_{21}' \cup V_{22}' \cup V_{22}'', \\
V_3 &= V_3' \cup V_{31}' \cup V_{32}' \cup V_{32}'', \\
&\vdots \\
V_k &= V_k' \cup V_{k1}' \cup V_{k2}' \cup V_{k2}'',
\end{align*}

with $V_i \cap V_{i1}' = \phi, V_i \cap V_{i2}' = \phi, V_i \cap V_{i2}'' = \phi, V_i \cap V_{i1}'' = \phi, V_i \cap V_{i2}'' = \phi, V_i \cap V_{i1}'' = \phi$.

Let $v_1 v_2, v_3 v_4$ be positive edges, $v_3 v_4, v_3 v_4$ be negative edges, where $v_1 \in V_1', v_1 \in V_{i1}', v_2 \in V_2', v_2 \in V_{i2}'$ and let there be all the edges of $G'(V'_1, V'_2, \cdots, V'_k), G'_1(V_{11}', V_{21}', \cdots, V_{k1}')$, $G''(V''_1, V''_2, \cdots, V''_k)$ and $G''_2(V_{12}'', V_{22}'', \cdots, V_{k2}'')$. Then $G(V_1, V_2, \cdots, V_k)$ has signed degree set S.

We note that addition of the positive edges $v_1 v_2, v_3 v_4$ and negative edges $v_3 v_4, v_3 v_4$ do not effect the signed degrees of the vertices of $G'(V'_1, V'_2, \cdots, V'_k)$, $G'_1(V_{11}', V_{21}', \cdots, V_{k1}')$, $G''(V''_1, V''_2, \cdots, V''_k)$ and $G''_2(V_{12}'', V_{22}'', \cdots, V_{k2}'')$.

Case (v). S is the set of all integers. Let $S = S' \cup S'' \cup \{0\}$, where S' and S'' are sets of positive and negative integers respectively. Then by Theorem 9 (Corollary 10), there exist connected signed k-partite graphs $G'(V_1', V_2', \cdots, V_k')$ and $G''(V_1'', V_2'', \cdots, V_k'')$ with signed degree sets S' and S'' respectively. Construct a new signed k-partite graph $G(V_1, V_2, \cdots, V_k)$ as follows.
Let
\[V_1 = V'_1 \cup V''_1 \cup \{x\}, \]
\[V_2 = V'_2 \cup V''_2 \cup \{y\}, \]
\[V_3 = V'_3 \cup V''_3, \]
\[\vdots \]
\[V_k = V'_k \cup V''_k, \]
with \(V'_i \cap V''_i = \emptyset \), \(V'_i \cap \{x\} = \emptyset \), \(V''_i \cap \{x\} = \emptyset \), \(V'_i \cap \{y\} = \emptyset \), \(V''_i \cap \{y\} = \emptyset \). Let \(v'_1 v'_2, v''_1 y, xv'_2 \) be positive edges, \(v''_1 y, v'_1 v'_2, xv''_2 \) be negative edges, where \(v'_1 \in V'_1 \), \(v''_1 \in V''_1 \), \(v'_2 \in V'_2 \), \(v''_2 \in V''_2 \), and let there be all the edges of \(G'(V'_1, V'_2, \ldots, V'_k) \) and \(G''(V''_1, V''_2, \ldots, V''_k) \). Therefore \(G(V_1, V_2, \ldots, V_k) \) has signed degree set \(S \). We note that addition of the positive edges \(v'_1 v'_2, v''_1 y, xv'_2 \) and negative edges \(v''_1 y, v'_1 v'_2, xv''_2 \) do not effect the signed degrees of the vertices of \(G'(V'_1, V'_2, \ldots, V'_k) \) and \(G''(V''_1, V''_2, \ldots, V''_k) \), and the vertices \(x \) and \(y \) have signed degrees zero each.

Clearly, by construction, all the signed \(k \)-partite graphs are connected. This proves the result. \(\square \)

References

