OSCILLATION OF FOURTH-ORDER DYNAMIC EQUATIONS

Said R. Grace*, Martin Bohner†‡ and Shurong Sun§

Received 14:12:2009 : Accepted 15:05:2010

Abstract
In this paper we shall reduce the problem of the oscillation of all solutions of certain nonlinear fourth-order dynamic equations to the problem of oscillation of two second-order dynamic equations, which are discussed intensively in the literature. Further oscillation criteria of fourth-order equations are given and proved using integration and Taylor’s formula on time scales. Some conditions are presented that ensure that all bounded solutions of the equation are oscillatory.

Keywords: Oscillation, Fourth-order, Dynamic equation, Time scales.

Communicated by Ağacık Zafer

1. Introduction
Consider the fourth-order nonlinear dynamic equation

\(x^{\Delta^4}(t) + q(t)x^{\lambda}(t) = 0, \)

where \(\lambda \) is the ratio of two positive odd integers and \(q \) is a real-valued positive and rd-continuous function on a time scale \(T \subset \mathbb{R} \) with \(\sup T = \infty \). Fourth-order differential equations (i.e., \(T = \mathbb{R} \)) and difference equations (i.e., \(T = \mathbb{N} \)) have been deeply investigated in the literature, see e.g., [7, 14, 16, 18, 21] for differential equations and [6, 13, 19, 22–24] for difference equations.

This research is supported by the Natural Science Foundation of China (60774004), Shandong Research Funds (Y2008A28), and the University of Jinan Research Funds for Doctors (B0621).

*Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Orman, Giza 12221, Egypt. E-mail: sgrace@alpha1-eng.cairo.eg

‡Corresponding Author.

§School of Science, University of Jinan, Jinan, Shandong 250022, P R China. E-mail: ssrrong@163.com