FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION

Irem Ciftci* and Huseyin Halilov†

Received 18:04:2007 : Accepted 11:08:2008

Abstract

A multidimensional mixed problem with Neuman type periodic boundary condition is studied for the quasilinear parabolic equation \(\frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(t, x, u) \). The existence, uniqueness and also continuity of the weak generalized solution is proved.

Keywords: Quasilinear parabolic equation, Mixed problem, Fourier method, Periodic boundary condition, Generalized solutions.

2000 AMS Classification: 35K55, 35K70.

1. Introduction

In this study we consider the following mixed problem

\[
\begin{align*}
\frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} &= f(t, x, u), \quad (t, x) \in D := \{0 < t < T, \ 0 < x < \pi\} \\
u(t, 0) &= u(t, \pi), \quad t \in [0, T] \\
\frac{\partial u}{\partial x}(t, 0) &= \frac{\partial u}{\partial x}(t, \pi), \quad t \in [0, T] \\
u(0, x) &= \varphi(x), \quad x \in [0, \pi]
\end{align*}
\]

for a quasilinear parabolic equation with nonlinear source term \(f = f(t, x, u) \). Here \(a^2 = \frac{k}{\rho c} \), where \(k \) denotes the heat conduction coefficient, \(\rho \) denotes density and \(c \) specific heat.

The functions \(\varphi(x) \) and \(f(t, x, u) \) are given functions on \([0, \pi]\) and \(D \times (-\infty, \infty) \), respectively.

Denote by \(u = u(t, x) \) a solution of problem (1)-(4).

*Department of Mathematics, Kocaeli University, Kocaeli, Turkey.
E-mail: isakinc@kocaeli.edu.tr

†Department of Mathematics, Rize University, Rize, Turkey.
E-mail: huseyin.halilov@rize.edu.tr