ON π-MORPHIC MODULES

A. Harmanci, * H. Kose † and Y. Kurtulmaz ‡

Received 02 : 07 : 2012 : Accepted 27 : 03 : 2013

Abstract
Let R be an arbitrary ring with identity and M be a right R-module with $S = \text{End}(M_R)$. Let $f \in S$. f is called π-morphic if $M/f^n(M) \cong r_M(f^n)$ for some positive integer n. A module M is called π-morphic if every $f \in S$ is π-morphic. It is proved that M is π-morphic and image-projective if and only if S is right π-morphic and M generates its kernel. S is unit-π-regular if and only if M is π-morphic and π-Rickart if and only if M is π-morphic and dual π-Rickart. M is π-morphic and image-injective if and only if S is left π-morphic and M cogenerates its cokernel.

Keywords: Endomorphism rings; π-morphic rings; π-morphic modules; unit π-regular rings.

1. Introduction
Throughout this paper all rings have an identity, all modules considered are unital right modules and all ring homomorphisms are unital (unless explicitly stated otherwise).

A ring R is said to be strongly π-regular (π-regular, right weakly π-regular) if for every element $x \in R$ there exists an integer $n > 0$ such that $x^n \in x^{n+1}R$ (respectively $x^n \in x^nRx^n$, $x^n \in x^nRx^nR$). It is called unit-π-regular if for every $a \in R$, there exist a unit element $x \in R$ and a positive integer n such that $a^n = a^nxa^n$. In the case of $n = 1$ there exists a unit x such that $a = axa$ for all $a \in R$, then R is unit regular. Clearly, a strongly π-regular ring is a π-regular ring.

We say also that the ring R is (von Neumann) regular if for each $a \in R$ there exists $x \in R$ such that $a = axa$ for some element x in R, that is, a is regular.

A module M is said to satisfy Fitting’s lemma if, for all $f \in S$, there exists an integer $n \geq 1$, depending on f, such that $M = f^nM \oplus \text{Ker}(f^n)$. Hence a module satisfies

*Department of Mathematics, Hacettepe University, Ankara, Turkey. E-mail: (A. Harmanci) harmanci@hacettepe.edu.tr
†Department of Mathematics, Ahi Evran University, Kirsehir, Turkey. Email: (H. Kose) hkose@ahievran.edu.tr
‡Bilkent University, Department of Mathematics, Ankara, Turkey. Email: (Y. Kurtulmaz) yosum@fen.bilkent.edu.tr
Fitting’s lemma if and only if its endomorphism ring is strongly \(\pi \)-regular (see [4]).

Let \(M \) be a module. It is a well-known theorem of Erlich [2] that a map \(\alpha \in S \) is unit regular if and only if it is regular and \(M/\alpha(M) \cong \ker(\alpha) \). We say that the ring \(R \) is left morphic if every element \(a \) satisfies \(aR = \{0\} \).

In what follows, by \(\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_n \) and \(\mathbb{Z}/n\mathbb{Z} \) we denote, respectively, integers, rational numbers, the ring of integers modulo \(n \) and the \(\mathbb{Z} \)-module of integers modulo \(n \).

We also denote \(r_M(I) = \{m \in M \mid Im = 0\} \) where \(I \) is any subset of \(S \); \(r_R(N) = \{r \in R \mid Nr = 0\} \) and \(l_S(N) = \{f \in S \mid fN = 0\} \) where \(N \) is any subset of \(M \). The maps between modules are assumed to be homomorphisms unless otherwise stated in the context.

2. Morphic Modules and \(\pi \)-Morphic Modules

Let \(M \) be a module with \(S = \text{End}(M_R) \), the ring of endomorphisms of the right \(R \)-module \(M \) and \(1 \) be the identity endomorphism of \(M \). Let \(f \in S \) is called morphic if \(M/f(M) \cong r_M(f) \). The module \(M \) is called morphic if every \(f \in S \) is morphic. Morphic modules are studied in [5]. An endomorphism \(f \in S \) is called \(\pi \)-morphistic if \(M/f^n(M) \cong r_M(f^n) \) for some positive integer \(n \). The module \(M \) is called \(\pi \)-morphistic if every \(f \in S \) is \(\pi \)-morphistic. In the sequel \(S \) will stand for \(\text{End}(M_R) \) for the right \(R \)-module \(M \) is considered.

It is clear that every morphic module is \(\pi \)-morphistic.

2.1. Example

There exists a \(\pi \)-morphistic module which is not morphic.

Let \(e_{ij} \) denote \(3 \times 3 \) matrix units. Consider the ring \(R = \{(e_{11} + e_{22} + e_{13})a + e_{12}b + e_{13}c + e_{23}d \mid a, b, c, d \in \mathbb{Z}_2\} \) and the right \(R \)-module \(M = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) where right \(R \)-module operation is given by

\[
(x, y, z)((e_{11} + e_{22} + e_{33})a + e_{12}b + e_{13}c + e_{23}d) = (xa, xb + ya, xc + yd + za)
\]

where \((x, y, z) \in M, (e_{11} + e_{22} + e_{33})a + e_{12}b + e_{13}c + e_{23}d \in R \). Let \(f \in S = \text{End}(M) \).

It is a routine check that there exist \(x, z \in \mathbb{Z}_2 \) such that \(f(1,0,0) = (x,0,z) \), \(f(0,1,0) = (0,x,0) \), \(f(0,0,1) = (0,0,x) \). For any \((a,b,c) \in M \), \(f(a,b,c) = (xa, ya + xb, za + xc) \).

(i) Let \(x = 0, y = 0, z = 1 \). Then \(f_1(a,b,c) = (0,0,a) \) implies \(f_1^2 = 0 \) which gives \(r_M(f_1^2) = M \). Hence \(M/f_1^2(M) \cong r_M(f_1^2) \).

(ii) Let \(x = 1, y = 0, z = 1 \). Then \(f_2(a,b,c) = (a,b,a + c) \) implies \(r_M(f_2) = 0 \) and \(f_2(M) = M \). Hence \(M/f_2(M) \cong r_M(f_2) \).

(iii) Let \(x = 1, y = 0, z = 0 \). Then \(f_3(a,b,c) = (a,b,c) \) and \(f_3 \) is the identity endomorphism of \(M \).

(iv) Let \(x = 0, y = 1, z = 0 \). Then \(f_4(a,b,c) = (0,0,0) \) and \(f_4^2 = 0 \).

(v) Let \(x = 0, y = 1, z = 1 \). Then \(f_5(a,b,c) = (0,a,a) \) and so \(f_5^2 = 0 \).

(vi) Let \(x = 1, y = 1, z = 0 \). Then \(f_6(a,b,c) = (a,a,b,c) \). Hence \(f_6 \) is an isomorphism.

(vii) Let \(x = 1, y = 1, z = 1 \). Then \(f_7(a,b,c) = (a,a,b,a + c) \). Hence \(f_7 \) is an isomorphism.

(viii) The last one \(f_8 \) is the zero endomorphism.

It follows that \(M \) is \(\pi \)-morphistic. However \(r_M(f_1) = (0) \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) and \(f_1(M) = (0) \times (0) \times \mathbb{Z}_2 \) shows that \(M \) is not morphic since, otherwise, \(M/f_1(M) \cong r_M(f_1) \), contrary to the fact that \(e_{12} + e_{13} \in R \) would annihilate \(r_M(f_1) \) from the right but not \(M/(0) \times (0) \times \mathbb{Z}_2 \).

2.2. Lemma

Let \(f \in S \). If \(M/f^n(M) \cong r_M(f^n) \), there exists \(g \in S \) such that \(f^nM = r_M(g) \) and \(g(M) = r_M(f^n) \).
On π-Morphic Modules

Proof. Assume that $M/f^n M \cong r_M(f^n)$. Let $M \xrightarrow{\pi} M/f^n M \xrightarrow{h} r_M(f^n)$ where π is the coset map and h is the isomorphism. Set $g = h\pi$. Then $g(M) = r_M(f^n)$ and $r_M(g) = f^n(M)$.

2.3. Proposition. Let M be a module, and let $f \in S$ be π-morphic. Then the following conditions are equivalent:

(1) $r_M(f) = 0$.
(2) f is an automorphism.

Proof. Assume that f in S is π-morphic. Then there exists a positive integer n such that $M/f^n(M) \cong r_M(f^n)$. By Lemma 2.2 there exists $g \in S$ such that $f^n M = r_M(g)$ and $g(M) = r_M(f^n)$. Assume (1) holds. Then $r_M(f) = 0$ and so $r_M(f^n) = 0$. This shows that $f^n(M) = M$. Hence $f(M) = M$ and f is an automorphism and (2) holds. (2) ⇒ (1) always holds.

2.4. Theorem. Let M be a π-morphic module. Then the following holds.

(1) For any $f \in S$, if $r_M(f) = 0$ then f^n is an automorphism of M for some positive integer n.
(2) For any $f \in S$, if $f(M) = M$ then f^n is an automorphism of M for some positive integer n.

Proof. (1) Let $f \in S$ with $r_M(f) = 0$. By hypothesis there exists a positive integer n such that $M/f^n M \cong r_M(f^n)$ and $r_M(f) = 0$ implies $r_M(f^n) = 0$. So $M = f^n M$. Hence f^n is an automorphism.

(2) Assume that $f(M) = M$. Then $f^i(M) = M$ for all $i \geq 1$. By hypothesis there exists a positive integer n such that $M/f^n M \cong r_M(f^n)$. Then $r_M(f^n) = 0$. Hence f^n is an automorphism.

Recall that the ring R is called directly finite if $ab = 1$ implies $ba = 1$ for any $a, b \in R$. A module M is called directly finite if its endomorphism ring is directly finite, equivalently for any endomorphisms f and g of M, $fg = 1$ implies $gf = 1$ where 1 is the identity endomorphism of M.

2.5. Corollary. Let M be a π-morphic module. Then it is directly finite.

Proof. Let $f, g \in S$ with $fg = 1$. By Proposition 2.3, g is an automorphism. Hence $gf = 1$.

2.6. Lemma. Let f be a π-morphic element. If $h : M \rightarrow M$ is an automorphism, then there exists a positive integer n such that $f^n h$ and $h f^n$ are both morphic. In particular, every π-unit regular endomorphism is morphic.

Proof. By Lemma 2.2, there exist $g \in S$ and a positive integer n such that $g(M) = r_M(f^n)$ and $r_M(g) = f^n(M)$. Then $(f^n h)(M) = f^n(h(M)) = f^n(M) = r_M(g) = r_M(h^{-1} g)$. Next we show $r_M(f^n h) = (h^{-1} g)(M)$. For if $m \in r_M(f^n h)$, then $(f^n h)(m) = 0$ or $h(m) \in r_M(f^n)$. Hence $m \in (h^{-1} g)(M)$ since $r_M(f^n) = g(M)$. So $r_M(f^n h) \leq (h^{-1} g)(M)$. For the converse inclusion, let $m \in (h^{-1} g)(M)$. Then $h(m) \in g(M)$. So $h(m) \in r_M(f^n)$ since $r_M(f^n) = g(M)$. Hence $(f^n h)(m) = 0$ or $m \in r_M(f^n h)$. Thus $(h^{-1} g)(M) \leq r_M(f^n h)$. It follows that $r_M(f^n h) = (h^{-1} g)(M)$, and so $f^n h$ is morphic. Similarly $h f^n$ is morphic.

2.7. Examples. (1) Every strongly π-regular ring is π-morphic as a right module over itself.
(2) Every module satisfying Fitting’s lemma is π-morphic.
(3) Let R be an Artinian ring. Then every finitely generated R module is π-morphic.
Proof. (1) and (2) are clear. (3) Let \(R \) be an Artinian ring and \(M \) be a finitely generated module. Then \(M \) is both Artinian and Noetherian. By Proposition 11.7 in [1], \(M \) satisfies Fitting’s lemma. Therefore \(M \) is \(\pi \)-morphic.

2.8. Theorem. Every direct summand of a \(\pi \)-morphic module is \(\pi \)-morphic.

Proof. Let \(M = N \oplus K \) and \(S_N = \text{End}_R(N) \) and \(f \in S_N \). Define \(M \xrightarrow{g} M \) by \(g(m) = f(m) + k \) where \(m = n + k \) and \(n \in N, k \in K \). Clearly \(g \in S \) and \(g(M) = f(N) \oplus K \) and \(r_M(g) = r_N(f) \). By hypothesis there exists a positive integer \(n \) such that \(M/g^n(M) \cong r_M(g^n) \). It is apparent that \(g^n(M) = f^n(N) \oplus K \). Hence \(N/f^n(N) \cong (N \oplus K)/(f^n(N) \oplus K) = M/g^n(M) \cong r_M(g^n) = r_N(f^n) \).

2.9. Remark. One may suspect that for \(\pi \)-morphic modules \(M_1 \) and \(M_2 \), \(M_1 \oplus M_2 \) is \(\pi \)-morphic module provided \(\text{Hom}(M_i, M_j) = 0 \) for \(1 \leq i \neq j \leq 2 \). But we cannot prove it.

Example 2.10 reveals that direct sum of \(\pi \)-morphic modules need not depend on the condition \(\text{Hom}(M_i, M_j) = 0 \).

2.10. Example. Consider the ring \(R = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}_2 \right\} \) and the right \(R \)-module \(M = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \mid a, b, c \in \mathbb{Z}_2 \right\} \), and the submodules \(N = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid a, b \in \mathbb{Z}_2 \right\} \) and \(K = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \mid c \in \mathbb{Z}_2 \right\} \).

Then \(M = N \oplus K \). Clearly \(N \) and \(K \) are \(\pi \)-morphic right \(R \)-modules. Let \(e_{ij} \) denote the \(3 \times 3 \) matrix units in \(M \) and for \(e_{23}c \in K \) define \(K \xrightarrow{h} N \) by \(h(e_{23}c) = e_{12}c \in N \). Then \(0 \neq h \in \text{Hom}(K, N) \). For any \(f \in S \), there exist \(a, b, c, u, v \in \mathbb{Z}_2 \) such that \(f \) is given by \(f \left(\begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} \right) = \left(\begin{pmatrix} 0 & ax + by + cz \\ 0 & 0 & ax + vz \\ 0 & 0 & 0 \end{pmatrix} \right) \). It is easily checked that all \(f \)'s are morphic endomorphisms.

2.11. Proposition. Let \(M = K \oplus N \) be a \(\pi \)-morphic module and \(K \xrightarrow{i} N \) be a homomorphism. Then \(K \) is isomorphic to a direct summand of \(N \).

Proof. For \(k+n \in M \) where \(k \in K, n \in N \), define \(g(k+n) = f(k) + n \). Then \(g \) is a right \(R \)-module homomorphism of \(M \) and \(g^2 = g \). So \(M = g(M) \oplus (1-g)(M) = (f(K) + N) \oplus \{k-f(k) \mid k \in K \} \). Clearly \(r_M(g) = (1-g)(M) = \{k-f(k) \mid k \in K \} \) is a direct summand of \(N \). By hypothesis there exists a positive integer \(n \) such that \(M/g^n(M) \cong r_M(g^n) \). Since \(g^2 = g \), so \(K \cong K \oplus (N/f(K) + N) \cong (K \oplus N)/(f(K) + N) \cong M/g(M) \cong r_M(g) \) is a direct summand of \(N \).
A module M is called image-projective if, whenever $gM \leq fM$ where f, $g \in S$, then $g \in fS$, that is $g = fh$ for some $h \in S$.

2.12. Lemma. Let M be a module with $S = \text{End}_R(M)$.
(1) If M is π-morphic, then M is left GP-injective S-module.
(2) If M is π-morphic and image-projective, then S is right π-morphic.
(3) If S is right π-morphic and M generates its kernel, then M is π-morphic.

Proof. (1) Let $f \in S$. By hypothesis there exist a positive integer n and $g \in S$ such that $f^nM = r_M(g)$ and $r_M(f^n) = gM$. Since $l_S(f^n) = l_S(f^nM)$, $r_M l_S(f^n) = r_M l_S(f^nM) = r_M l_S(g) = r_M(g) = f^nM$.

(2) Let $f \in S$. By hypothesis there exist $g \in S$ and a positive integer n such that $f^n = r_M(g)$ and $r_M(f^n) = gM$. Then $g f^n = 0$. Hence $f^n \subseteq r_M(g)$ and so $f^nS \subseteq r_M(g)$. Let $h \in r_M(g)$. Then $g h(M) = 0$ and $h(M) \subseteq r_M(g) = f^n(M)$. By image-projectivity of M there exists $h' \in S$ such that $f^n h' = h f^nS$ or $r_M(g) \subseteq f^nS$. Thus $r_M(g) = f^n S$. Next we prove $r_M(f^n) = g S$. If $h \in r_M(f^n)$, then $f^n h = 0$ and $f^n h(M) = 0$ and $h(M) \subseteq r_M(f^n) = g (M)$. By image-projectivity of M there exists an $h' \in S$ such that $h = gh'$. $r_M(f^n) = g (M)$ implies $f^n g = 0$. Hence $g S \subseteq r_M(f^n)$ and so $g S = r_M(f^n)$.

(3) Let $f \in S$. There exist $g \in S$ and a positive integer n such that $f^nS = r_M(g)$ and $r_M(f^n) = gS$. We prove $f^n(M) = r_M(g)$ and $r_M(f^n) = g(M)$. $f^nS = r_M(g)$ implies $g f^n = 0$ and so $f^n(M) \subseteq r_M(g)$. Let $h \in S$ such that $h(M) \subseteq r_M(g)$. So $g h = 0$ and $h \in f^n S$. There exists $h' \in S$ such that $h = f^n h'$. Hence $h(M) \subseteq f^n h'(M) \subseteq f^n(M)$. Since M generates $r_M(g)$, $r_M(g) \subseteq f^n(M)$, $r_M(g) = f^n(M)$. Next we prove $r_M(f^n) = g(M)$. $r_M(f^n) = gS$ implies $f^n g = 0$. Then $g(M) \subseteq r_M(f^n)$. Let $h(M) \subseteq r_M(f^n)$. Then $f^n h(M) = 0$ and so $f^n h = 0$ and $h \in r_M(f^n) = g S$. There exists $h' \in S$ such that $h = gh'$. Hence $h(M) \subseteq gh'(M) \subseteq g(M)$ and $r_M(f^n) \subseteq g(M)$ since M generates $r_M(f^n)$. Thus $r_M(f^n) = g(M)$.

The following theorem generalizes Theorem 32 in [5] to π-morphic modules.

2.13. Theorem. Let M be a module. Then the following are equivalent:
(1) M is π-morphic and image-projective.
(2) S is right π-morphic and M generates its kernel.

Let M be a module. In [7], the module M is called π-Rickart if for any $f \in S$, there exist $e^2 = e \in S$ and a positive integer n such that $r_M(f^n) = eM$, while in [3], M is said to be Rickart if for any $f \in S$, there exists $e^2 = e \in S$ such that $r_M(f) = eM$. Dickart module is named as kernel-direct in [5]. In [8], M is called dual π-Rickart if for any $f \in S$, there exist $e^2 = e \in S$ and a positive integer n such that $f^n(M) = eM$, while in [3], M is said to be dual Rickart if for any $f \in S$, there exists $e^2 = e \in S$ such that $f(M) = eM$. Dual-Rickart module is named as image-direct in [5]. Erlich [2] proved that a map $f \in S$ is unit-regular if and only if f is regular and morphic. We state and prove this theorem for π-regular rings.

2.14. Theorem. Let $f \in S$. Then the following are equivalent:
(1) f is unit-π-regular.
(2) f is π-regular and morphic.

Proof. (1) \Rightarrow (2) Every unit-π-regular ring is π-regular. There exist a unit g and a positive integer n such that $f^n = f^n g f^n$. Then $g f^n$ is an idempotent, $r_M(f^n) = (1 - g f^n)M$ and
A. Harmanci, H. Kose and Y. Kurtulmaz

\[M \cong f^n(M) \oplus (1 - g^n)M. \] Hence \(M/f^n(M) \cong r_M(f^n) \).

(2) \(\Rightarrow \) (1) Let \(f^n = f^n g^n \) where \(g \in S \). Then
\[M = f^n M \oplus (1 - f^n g)M = r_M(f^n) \oplus (g f^n)M. \]
Let \(h : f^n M \rightarrow g f^n(M) \) be defined by \(h f^n(m) = g f^n(m) \) where \(f^n(m) \in f^n(M) \). Then \(h \) and \(f^n \) are homomorphisms and inverse each other. Now
\[M = f^n(M) \oplus (1 - f^n g)(M) \]
Let \(n = f^n g f^n \) where \(f^n = f_n f^n \) and \(g f^n = f^n g f^n \).
By morphic condition we have \(M/f^n(M) \cong r_M(f^n) \).

2.15. Theorem. Let \(M \) be a module with \(S = \text{End}_R(M) \). The following are equivalent:

1. \(S \) is unit-\(\pi \)-regular.
2. \(M \) is \(\pi \)-morphic and \(\pi \)-Rickart.
3. \(M \) is \(\pi \)-morphic and dual \(\pi \)-Rickart.

Proof. (1) \(\Rightarrow \) (2) Let \(S \) be unit-\(\pi \)-regular and \(f \in S \). There exist a unit \(g \in S \) and a positive integer \(n \) such that \(f^n = f^n g^n \). By virtue of Theorem 2.14, \(M \) is \(\pi \)-morphic.

(2) \(\Rightarrow \) (3) Let \(f \in S \). There exists a positive integer \(n \) such that \(M/(f^n M) \cong r_M(f^n) \).
By Lemma 2.2 there exists a \(g \in S \) such that \(g(M) = r_M(f^n) \) and \(r_M(g) = f^n(M) \).
By (2), \(r_M(g) \) is \(\pi \)-Rickart, therefore \(f^n(M) \) is direct summand.

(3) \(\Rightarrow \) (1) Let \(f \in S \). By (3), there exist a positive integer \(n \) and \(g \in S \) such that \(f^n M = r_M(g) \) and \(r_M(f^n) = g(M) \).
By (3), \(f^n M \) and \(g(M) \) are direct summand and so is \(r_M(f^n) \).
Hence \(S \) is \(\pi \)-regular ring by [9, Corollary 3.2]. By Theorem 2.14, \(S \) is unit-\(\pi \)-regular.

Example 2.16 shows that there exists a \(\pi \)-Rickart module which is not \(\pi \)-morphic.

2.16. Example. Consider \(M = \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}) \) as a \(\mathbb{Z} \)-module. It can be easily determined that \(S = \text{End}_\mathbb{Z}(M) \) is
\[\begin{bmatrix} \mathbb{Z} & 0 \\ \mathbb{Z}_2 & \mathbb{Z}_2 \end{bmatrix} \]
For any \(f = \begin{bmatrix} a & 0 \\ \bar{b} & \bar{c} \end{bmatrix} \in S \), we have the following cases.

Case 1. Assume that \(a = 0 \), \(\bar{b} = \bar{0} \), \(\bar{c} = \bar{0} \) or \(a = 0 \), \(\bar{b} = \bar{1} \), \(\bar{c} = \bar{1} \). In both cases \(f \) is an idempotent, and so \(r_M(f) = (1 - f)M \).

Case 2. If \(a \neq 0 \), \(\bar{b} = \bar{0} \), \(\bar{c} = \bar{0} \) or \(a \neq 0 \), \(\bar{b} = \bar{1} \), \(\bar{c} = \bar{0} \), then \(r_M(f) = 0 \).

Case 3. If \(a \neq 0 \), \(\bar{b} = \bar{1} \) or \(a \neq 0 \), \(\bar{b} = \bar{0} \), \(\bar{c} = \bar{0} \), then \(r_M(f) = 0 \). Hence \(r_M(f^n) = M \).

Therefore \(M \) is a \(\pi \)-Rickart module. Now we prove it is not \(\pi \)-morphic. Let
\[f = \begin{bmatrix} 2 & 0 \\ 0 & \bar{1} \end{bmatrix} \in S. \]
For each positive integer \(n \), \(r_M(f^n) = 0 \) and
\[f^n(M) = \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}). \]
Then \(M/f^n(M) \cong (\mathbb{Z}/2\mathbb{Z})^n \). But \((\mathbb{Z}/2\mathbb{Z})^n \) can not be isomorphic to \(r_M(f^n) = 0 \).

In [5], \(M \) is called an image-injective module if for each \(f \in S \), every \(R \)-module homomorphisms from \(f(M) \) to \(M \) extends to \(M \). By this definition we state and prove dual versions of Lemma 2.12.

2.17. Lemma. Let \(M \) be a module with \(S = \text{End}_R(M) \).

1. If \(S \) is left \(\pi \)-morphic, then \(M \) is image-injective.
2. If \(M \) is \(\pi \)-morphic and image-injective, then \(S \) is left \(\pi \)-morphic.
3. If \(S \) is left \(\pi \)-morphic and \(M \) cogenerates its cokernel, then \(M \) is \(\pi \)-morphic.
Proof. (1) By Lemma 2.12, S is right GP-injective. Let $f, g \in S$. There exists a positive integer n depending on f such that $f^n \neq 0$ and any map $f^n S \rightarrow S$ extends to an endomorphism of S. Let $f^n(M) \rightarrow M$ be a right R-module homomorphism and set $h = g f^n$. Then $r_S(f^n) \leq r_S(h)$. The map $f^n S \rightarrow hS$ defined by $t(f^n s) = hs$ where $s \in S$ is well defined right S-module homomorphism. By the GP-injectivity of S, t extends to an endomorphism g' of S so that $g' f^n = h$. Let $m \in M$. $g' f^n(m) = h(m) = g f^n(m)$. Hence g extends to $g' \in S$. Thus M is image-injective.

(2) Let $f \in S$. There exist $g \in S$ and a positive integer n such that $f^n(M) = r_M(g)$ and $r_M(f^n) = g(M)$. We prove $Sf^n = l_S(g)$ and $l_S(f^n) = Sg$. $r_M(f^n) = g(M)$ implies $f^n g = 0$. Then $f^n \in l_S(g)$ and so $Sf^n \leq l_S(g)$. Let $h \in l_S(g)$. Then $hg = 0$ or $f^n(M) = g(M) \leq r_M(h)$. Since $f^n(M) = g(M)$, the map defined t by $f^n(M) \rightarrow h(M)$ extends to an endomorphism α of M. Then $\alpha f^n = h \in Sf^n$. Hence $l_S(g) \leq Sf^n$ and so $l_S(g) = Sf^n$.

(3) Let $f \in S$. We prove that there exist $g \in S$ and a positive integer n such that $f^n(M) = r_M(g)$ and $r_M(f^n) = g(M)$. By hypothesis S is left π-morphic, there exist $g \in S$ and a positive integer n such that $Sf^n = l_S(g)$ and $l_S(f^n) = Sg$. $Sf^n = l_S(g)$ implies $f^n g = 0$ and $g(M) \leq r_M(f^n)$. Let $m \in r_M(f^n) = g(M)$. Then $0 \neq m \in M/g(M)$. By hypothesis, M cogenerated by $M/g(M)$. There exists a map $M/g(M) \rightarrow M$ such that $t(m) = 0$. Now define $M \rightarrow M$ by $\alpha(x) = t(\overline{x})$. Then $t g = 0$ for all $x \in M$. Hence $\alpha g = 0$. So $\alpha \in l_S(g) = Sf^n$. There exists $s \in S$ such that $\alpha = sf^n$. This leads us a contradiction since $0 \neq \alpha(m) = sf^n(m) = 0$. Thus $r_M(f^n) = g(M)$.

2.18. Theorem. Let M be a module. Then the following are equivalent:
(1) M is π-morphic and image injective.
(2) S is left π-morphic and M cogenerated its cokernel.

Proof. Clear from Lemma 2.17. □

A ring R is said to be right Kasch if every simple right R-module embeds in R, equivalently, if $l(I) \neq 0$ for every proper (maximal) right ideal I of R (see also [6, page 51]). Let M be a module. M is called Kasch module if any simple module in $\sigma[M]$ embeds in M, where $\sigma[M]$ is the category consisting of all M-subgenerated right R-modules, while M is strongly Kasch if any simple right R-module embeds in M. It is easy to see that a ring R is right Kasch if and only if the right R-module R is Kasch if and only if the right R-module R is strongly Kasch since $\sigma[R]$ is just the category of all right R-modules for details see [10].

2.19. Proposition. Let M be a π-morphic module. If every maximal right ideal of S is principal, then S is a right Kasch ring.

Proof. Let I be maximal right ideal of S. Then $I = fS$ for some $f \in S$. There exists a positive integer n such that $M/f^n M \cong r_M(f^n)$. Assume that $r_M(f^n) = 0$. Then $f^n M = M = fM$. Hence f^n is an isomorphism. Thus $I = S$. It is a contradiction.
It follows that for any nonzero \(f \neq 0 \in I \) there exists a positive integer \(n \) such that \(M/f^nM \cong r_M(f^n) \neq 0 \). Consider the diagram \(M \xrightarrow{\pi} M/f^nM \xrightarrow{\phi} r_M(f^n) \) where \(\pi \) is coset map and \(\phi \) is the isomorphism. Then \(\phi \pi f^n = 0 \). Hence \(0 \neq \phi \pi f^{n-1} \in I_S(f) \). \(\square \)

2.20. Corollary. Let \(R \) be a right \(\pi \)-morphic ring and every maximal right ideal be principal. Then \(R \) is right Kasch.

Proof. Clear from Lemma 2.19 by considering \(M = R_R \) and \(S = \text{End}_R(R) \cong R \). \(\square \)

2.21. Proposition. Let \(S \) be a right \(\pi \)-morphic ring. Then the following conditions are equivalent:

1. \(S \) is a right Kasch ring.
2. Every maximal right ideal of \(S \) is an annihilator.
3. Every maximal right ideal of \(S \) is principal.

Proof. Note that every \(\pi \)-morphic ring is directly finite by Corollary 2.5. In [6] it is noted that (1) \(\Rightarrow \) (2) always holds.

(2) \(\Rightarrow \) (3) Let \(I \) be a maximal right ideal of \(S \). Then there exists a nonzero right ideal \(A \) of \(S \) such that \(I = l(A) \). Let \(0 \neq a \in A \), there exist \(b \in S \) and a positive integer \(n \) such that \(a^nS = r(b) \) and \(r(a^n) = bS \). Hence \(I \subseteq l(a^n) \neq S \). Therefore, \(I = r(a^n) \).

(3) \(\Rightarrow \) (1) To complete the proof we show that \(l(I) \neq 0 \) for every maximal right ideal \(I \) of \(S \). Let \(I \) be a maximal right ideal. By (3), \(I = aS \) for some \(a \in S \). We invoke hypothesis here to find \(b \in S \) and a positive integer \(n \) such that \(a^nS = r(b) \) and \(r(a^n) = bS \). Then \(a^nb = 0 \) and \(ba^n = 0 \). If \(b = 0 \), then \(a^nS = S \). By Corollary 2.5, \(a \) is invertible and so \(I = S \). This contradicts being \(I \) maximal. It follows that \(b \neq 0 \). Let \(t \) be a nonzero positive integer such that \(ba^t = 0 \) and \(ba^{t-1} \neq 0 \). Hence \(ba^t = 0 \) implies \(0 \neq ba^{t-1} \in l(I) \). So \(S \) is right Kasch. \(\square \)

References