A Link between Topology and Soft Topology

M. Kiruthika* and P. Thangavelu†

February 13, 2018

Abstract
Muhammad Shabir and Munazza Naz have shown that every soft topology gives a parametrized family of topologies on a set X. In this paper such a link between topology and soft topology is further discussed.

Keywords: Soft Sets, Soft Topology, Soft Open, Soft Closed, Parameterized family of topologies.

2010 AMS Classification : 54B05, 54B10, 54C05

1 Introduction

The theory of soft sets gives a vital mathematical tool for handling uncertainties and vague concepts. In the year 1999, Molodtsov[9] initiated the study of soft sets. Soft set theory has been applied in several directions. Following this Maji, Biswas, and Roy[7,8] discussed soft set theoretical operations and gave an application of soft set theory to a decision making problem. Recently Muhammad Shabir and Munazza Naz introduced the notion of soft topology[10] and established that every soft topology induces a collection of topologies called the parametrized family of topologies induced by the soft topology. Several mathematicians published papers on applications of soft sets and soft topology[1,2,6,11,12,18]. Soft sets and soft topology have applications to data mining, image processing, decision making problems, spatial modeling and neural patterns[3,4,5,7,13,14,15,16,17]. The purpose of this paper is to study a link between a soft topology and the parametrized family of topologies induced by the soft topology. In particular, we give conditions on a given parameterized family of topologies which ensure there exists a soft topology whose induced family of topologies is the given family.

*Department of Mathematics, Suguna College of Engineering, Coimbatore-641005, India. Email: kiruthi.karpagan@gmail.com
†Corresponding author, Ramanujam Centre for Mathematical sciences, Thiruppavarnam-630061, India, Email: ptvelu12@gmail.com
2 Preliminaries

Throughout this paper X denotes the universal set and E denotes the parameter space.

Definition 2.1[9] A pair (F, E) is called a soft set over X, where $F : E \to 2^X$ is a mapping. We denote (F, E) by \tilde{F} and we write $\tilde{F} = \{(e, F(e)) : e \in E\}$.

According to Muhammad Shabir and Munazza Naz[10], for each subset A of E (F_A, E) is a soft set over the universal set X, where $F_A : A \to 2^X$ is a mapping. However $F_A : A \to 2^X$ can be extended to E by setting $F_A(e) = \phi$ for all $e \in E - A$. This motivates us to fix the parameter space.

In this paper, the definitions and results of Mohammad Shabir and Munazza Naz[10] are taken and the subset A of E is replaced by the fixed parameter space E. Accordingly the following definitions and results are due to Mohammad Shabir and Munazza Naz[10].

Definition 2.2 For any two soft sets \tilde{F} and \tilde{G} over a common universe X, \tilde{F} is a soft subset of \tilde{G} if $F(e) \subseteq G(e)$ for all $e \in E$. If \tilde{F} is a soft subset of \tilde{G} then we write $\tilde{F} \subseteq \tilde{G}$.

Two soft sets \tilde{F} and \tilde{G} over a common universe X are soft equal if $\tilde{F} \subseteq \tilde{G}$ and $\tilde{G} \subseteq \tilde{F}$. That is $\tilde{F} = \tilde{G}$ if and only if $F(e) = G(e)$ for all $e \in E$.

Definition 2.3 A soft set $\tilde{\Phi}$ over X is said to be the NULL soft set if $\tilde{\Phi} = \{(e, \phi) : e \in E\}$.

Definition 2.4 A soft set \tilde{X} over X is said to be the absolute soft set if $\tilde{X} = \{(e, X) : e \in E\}$.

Definition 2.5 The union of two soft sets \tilde{F} and \tilde{G} over X is defined as $\tilde{F} \cup \tilde{G} = (F \cup G, E)$ where $(F \cup G)(e) = F(e) \cup G(e)$ for all $e \in E$.

Definition 2.6 The intersection of two soft sets \tilde{F} and \tilde{G} over X is defined as $\tilde{F} \cap \tilde{G} = (F \cap G, E)$ where $(F \cap G)(e) = F(e) \cap G(e)$ for all $e \in E$.

The arbitrary union and the arbitrary intersection of soft sets are defined as follows.

$\cup \{F_\alpha : \alpha \in \Delta\} = \{(\cup \{F_\alpha : \alpha \in \Delta\}, E)\}$ and $\cap \{F_\alpha : \alpha \in \Delta\} = \{(\cap \{F_\alpha : \alpha \in \Delta\}, E)\}$

where $(\cup \{F_\alpha : \alpha \in \Delta\})(e) = \cup \{F_\alpha(e) : \alpha \in \Delta\}$ and $(\cap \{F_\alpha : \alpha \in \Delta\})(e) = \cap \{F_\alpha(e) : \alpha \in \Delta\}$.

Definition 2.7 The complement of a soft set \tilde{F} is denoted by $(\tilde{F})' = (F', E)$ where $F' : E \to 2^X$ is the mapping given by $F'(e) = X - F(e)$ for all $e \in E$.

Definition 2.8 If $\tilde{\tau}$ is a collection of soft sets over X, then $\tilde{\tau}$ is said to be a soft topology on X if

(i)$\tilde{\Phi}, \tilde{X}$ belong to $\tilde{\tau}$
(ii) arbitrary union of soft sets in \(\tilde{\tau} \) belongs to \(\tilde{\tau} \),

(iii) the intersection of any two soft sets in \(\tilde{\tau} \) belongs to \(\tilde{\tau} \).

If \(\tilde{\tau} \) is a soft topology over a universal set \(X \) with parameter space \(E \), then \((X, \tilde{\tau}, E) \) is called a soft topological space and the members of \(\tilde{\tau} \) are called soft open sets over \((X, E) \).

Muhammad Shabir and Munazza Naz introduced a parametrized family of topologies and established that every soft topology induces the parametrized family of topologies as shown in the following lemma.

Lemma 2.9 Let \((X, \tilde{\tau}, E) \) be a soft topological space over \(X \). Then the collection \(\tilde{\tau}_e = \{ F(e) : \tilde{F} \in \tilde{\tau} \} \) for each \(e \in E \), defines a topology on \(X \).

3 Link

Definition 3.1 Let \((X, \tilde{\tau}, E) \) be a soft topological space over \(X \). Then the collection \(E(\tilde{\tau}) = \{ \tilde{\tau}_e : e \in E \} \) denotes the parameterized family of topologies induced by the soft topology \(\tilde{\tau} \).

Proposition 3.2 Let \((X, \tilde{\tau}, E) \) be a soft topology over \(X \) with parameter space \(E \). Then \(|E(\tilde{\tau})| \leq |E| \) and \(|\tilde{\tau}_e| \leq |\tilde{\tau}| \) for every \(e \in E \).

Proof

Let \(\tilde{\tau} \) be a soft topological space over \(X \) with parameter space \(E \). Define \(\varphi : E \to E(\tilde{\tau}) \) by \(\varphi(e) = \tilde{\tau}_e \). Clearly \(\varphi \) is onto but it need not be one-to-one.

This proves that \(|E(\tilde{\tau})| \leq |E| \). Now define \(\theta_e : \tilde{\tau} \to \tilde{\tau}_e \) by \(\theta_e(F) = F(e) \). \(\theta_e \) is onto but need not be one-to-one. Therefore \(|\tilde{\tau}_e| \leq |\tilde{\tau}| \)

The above proposition has been illustrated in the following examples.

Example 3.3 Let \(X = \{ h_1, h_2, h_3 \} \), \(E = \{ e_1, e_2 \} \) and \(\tilde{\tau} = \{ \phi, X, \tilde{F}_1, \tilde{F}_2, \tilde{F}_3, \tilde{F}_4, \tilde{F}_5, \tilde{F}_6, \tilde{F}_7, \tilde{F}_8, \tilde{F}_9 \} \)

where \(\Phi, X, \tilde{F}_1, \tilde{F}_2, \tilde{F}_3, \tilde{F}_4, \tilde{F}_5, \tilde{F}_6, \tilde{F}_7, \tilde{F}_8, \tilde{F}_9 \) are soft sets over \(X \).

The soft sets are defined as follows

\[
\begin{align*}
\tilde{F}_1 &= \{(e_1, \{h_2\}), (e_2, \{h_1\})\} \\
\tilde{F}_2 &= \{(e_1, \{h_2, h_3\}), (e_2, \{h_1, h_2\})\}, \\
\tilde{F}_3 &= \{(e_1, \{h_1, h_2\}), (e_2, \{h_1, h_2\})\}, \\
\tilde{F}_4 &= \{(e_1, \{h_1, h_2\}), (e_2, \{h_1, h_3\})\}, \\
\tilde{F}_5 &= \{(e_1, X), (e_2, \{h_1, h_2\})\},
\end{align*}
\]
\[\tilde{F}_0 = \{(e_1, \{h_2\}), (e_2, \{h_1, h_2\})\},\]
\[\tilde{F}_7 = \{(e_1, \{h_2, h_3\}), (e_2, X)\},\]
\[\tilde{F}_8 = \{(e_1, \{h_1, h_2\}), (e_2, X)\},\]
\[\tilde{F}_9 = \{(e_1, \{h_2\}), (e_2, X)\}.\]

Then \(\tilde{\tau}\) defines a soft topology on \(X\) and \((X, \tilde{\tau}, E)\) is a soft topological space over \(X\). It can be easily seen that \(\tilde{\tau}_{e_1} = \{\phi, X, \{h_2\}, \{h_2, h_3\}, \{h_1, h_2\}\}\) and \(\tilde{\tau}_{e_2} = \{\phi, X, \{h_1\}, \{h_1, h_3\}, \{h_1, h_2\}\}\) are topologies on \(X\).

Here \(e_1 \neq e_2\) and \(\tilde{\tau}_{e_1} \neq \tilde{\tau}_{e_2}\). Since \(\varphi(e_1) \neq \varphi(e_2)\), \(\varphi\) is one-to-one. Here \(|E(\tilde{\tau})| = 2\), \(|E| = 2\) and \(|E(\tilde{\tau})| = |E|\).

Also \(\tilde{F}_1(e_1) = \tilde{F}_6(e_1)\) but \(\tilde{F}_1 \neq \tilde{F}_6\). Since \(\theta_{e_1}(\tilde{F}_1) = \theta_{e_1}(\tilde{F}_6)\), \(\theta_{e_1}\) is not one-to-one. Here \(|\tilde{\tau}_{e_1}| = 5\) and \(|\tilde{\tau}| = 11\). Therefore \(|\tilde{\tau}_{e_1}| < |\tilde{\tau}|\). Again since \(\theta_{e_2}(\tilde{F}_2) = \theta_{e_2}(\tilde{F}_3) = \{h_1, h_2\}\), \(\theta_{e_2}\) is not one-to-one. Here \(|\tilde{\tau}_{e_2}| = 5 < 11 = |\tilde{\tau}|\).

Example 3.4 Let \(X = \{h_1, h_2\}, E = \{e_1, e_2\}\) and \(\tilde{\tau} = \{\Phi, X, \tilde{F}_1, \tilde{F}_2, \tilde{F}_3, \tilde{F}_4, \tilde{F}_5, \tilde{F}_6\}\) where \(\Phi, X, \tilde{F}_1, \tilde{F}_2, \tilde{F}_3, \tilde{F}_4, \tilde{F}_5, \tilde{F}_6\) are soft sets over \(X\).

The soft sets are defined as follows
\[\tilde{F}_1 = \{(e_1, \{h_2\}), (e_2, \{h_2\})\},\]
\[\tilde{F}_2 = \{(e_1, X), (e_2, \{h_2, h_3\})\},\]
\[\tilde{F}_3 = \{(e_1, \{h_2\}), (e_2, X)\},\]
\[\tilde{F}_4 = \{(e_1, \{h_2\}), (e_2, \{h_2, h_3\})\},\]
\[\tilde{F}_5 = \{(e_1, \{h_2, h_3\}), (e_2, X)\},\]
\[\tilde{F}_6 = \{(e_1, \{h_2, h_3\}), (e_2, \{h_2, h_3\})\}.

Then \(\tilde{\tau}\) defines a soft topology on \(X\) and hence \((X, \tilde{\tau}, E)\) is a soft topological space over \(X\).

It can be easily seen that \(\tilde{\tau}_{e_1} = \{\phi, X, \{h_2\}, \{h_2, h_3\}\}\) and \(\tilde{\tau}_{e_2} = \{\phi, X, \{h_2\}, \{h_2, h_3\}\}\) are topologies on \(X\). Here \(e_1 \neq e_2\) but \(\tilde{\tau}_{e_1} = \tilde{\tau}_{e_2}\). Since \(\varphi(e_1) = \varphi(e_2)\), \(\varphi\) is not one-to-one. Here \(|E(\tilde{\tau})| = 1\), \(|E| = 2\) and \(|E(\tilde{\tau})| < |E|\).

Also \(\tilde{F}_1(e_1) = \tilde{F}_4(e_1)\) but \(\tilde{F}_1 \neq \tilde{F}_4\). Since \(\theta_{e_1}(\tilde{F}_1) = \theta_{e_1}(\tilde{F}_4)\), \(\theta_{e_1}\) is not one-to-one. Here \(|\tilde{\tau}_{e_1}| = 4\) and \(|\tilde{\tau}| = 8\). Therefore \(|\tilde{\tau}_{e_1}| < |\tilde{\tau}|\). Again since \(\theta_{e_2}(\tilde{F}_3) = \theta_{e_2}(\tilde{F}_6) = \{h_2, h_3\}\), \(\theta_{e_2}\) is not one-to-one. Here \(|\tilde{\tau}_{e_2}| = 4\), \(|\tilde{\tau}| = 8\). Therefore \(|\tilde{\tau}_{e_2}| < |\tilde{\tau}| = 8\).

Example 3.5 Let \(X = \{h_1, h_2\}, E = \{e_1, e_2\}\) and \(\tilde{\tau} = \{\Phi, X, \tilde{F}_1, \tilde{F}_2\}\) where \(\Phi, X, \tilde{F}_1, \tilde{F}_2\) are soft sets over \(X\). The soft sets are defined as follows
\[\tilde{\tau}_1 = \{(e_1, \{h_2, h_3\}), (e_2, \{h_2, h_3\})\}, \]
\[\tilde{\tau}_2 = \{(e_1, \{h_2\}), (e_2, \{h_2\})\}, \]

Then \(\tilde{\tau} \) defines a soft topology on \(X \) and hence \((X, \tilde{\tau}, E)\) is a soft topological space over \(X \). It can be easily seen that here \(\tilde{\tau}_{e_1} = \{\phi, X, \{h_2, h_3\}\} \) and \(\tilde{\tau}_{e_2} = \{\phi, X, \{h_2\}, \{h_2, h_3\}\} \) are topologies on \(X \). Here \(e_1 \neq e_2 \) and \(\tilde{\tau}_{e_1} = \tilde{\tau}_{e_2} \). Since \(\varphi(e_1) = \varphi(e_2) \), \(\varphi \) is not one-to-one. Here \(|E(\tilde{\tau})| = 1 \) and \(|E| = 2 \). Therefore \(|E(\tilde{\tau})| < |E| \).

Also \(\tilde{\tau}_1(e_1) \neq \tilde{\tau}_2(e_1) \) and \(\tilde{\tau}_1 \neq \tilde{\tau}_2 \). Since \(\theta_{e_1}(\tilde{\tau}_1) \neq \theta_{e_1}(\tilde{\tau}_2) \), \(\theta_{e_1} \) is one-to-one and onto. Here \(|\tilde{\tau}_{e_1}| = 4 \) and \(|\tilde{\tau}| = 4 \). Therefore \(|\tilde{\tau}_{e_1}| = |\tilde{\tau}| \). Again since \(\theta_{e_2}(\tilde{\tau}_1) \neq \theta_{e_2}(\tilde{\tau}_2) \), \(\theta_{e_2} \) is one-to-one. Here \(|\tilde{\tau}_{e_2}| = 4, |\tilde{\tau}| = 4 \). Therefore \(|\tilde{\tau}_{e_2}| = |\tilde{\tau}| = 4 \).

Muhammad Shabir and Munazza Naz established that every soft topology induces a parameterized family of topologies and further gave an example (Example 2, page 1790 of [10]) to show that the converse is not true. Then the following question will arise.

Given a collection \(\{\tau_e : e \in E\} \) of topologies on \(X \), are there conditions under which there exist a soft topology \(\tilde{\tau} \) over \(X \) with parameter space \(E \) such that \(\tau_e = \tilde{\tau}_e \), for all \(e \in E \). The following theorem gives an answer to the above question.

Theorem 3.6: Let \(X \) be a universal set and \(E \) be a parameter space. Let \(\{\tau_\alpha : \alpha \in E\} \) be a family of topologies on \(X \) satisfying the following conditions.

(i) There is an index set \(J \) such that for each \(\alpha \in E \), \(\tau_\alpha = \{G_{\alpha j} : j \in J\} \)

(ii) If \(\Delta \subseteq J \), then \(\exists r, s \in J \) such that \(\cap \{G_{\alpha j} : j \in \Delta\} = G_{\alpha r} \) for finite \(\Delta \) and \(\cup \{G_{\alpha j} : j \in \Delta\} = G_{\alpha s} \) for each \(\alpha \in E \).

(iii) There exist \(j_0, j_1 \in J \) such that \(G_{\alpha j_0} = \phi \) and \(G_{\alpha j_1} = X \) for all \(\alpha \in E \).

Then \(\tilde{\tau} = \{\tilde{\tau}_j : j \in J\} \) where \(\tilde{\tau}_j(\alpha) = G_{\alpha j} \) for each \(\alpha \in E \) is a soft topology on \(X \) with parameter space \(E \) satisfying \(\tilde{\tau}_\alpha = \tau_\alpha \) for all \(\alpha \in E \).

Proof: For each \(j \in J \) define \(\tilde{F}_j : E \to 2^X \) by \(\tilde{F}_j(\alpha) = G_{\alpha j} \) for all \(\alpha \in E \).

Then \(\{\tilde{F}_j : j \in J\} \) is a collection of soft sets over \(X \) with parameter space \(E \).

Claim: \(\tilde{\tau} = \{\tilde{F}_j : j \in J\} \) is a soft topology on \(X \).

Let \(\Delta \) be a non-empty subset of \(J \) and let \(\alpha \in E \).

\[
(\bigcup \{\tilde{F}_j : j \in \Delta\})(\alpha) = \bigcup \{\tilde{F}_j(\alpha) : j \in \Delta\} = \bigcup \{G_{\alpha j} : j \in \Delta\} = G_{\alpha s} \text{ for some } s \in J
\]

Since this is true for every \(\alpha \in E \), \((\bigcup \{\tilde{F}_j : j \in \Delta\})(\alpha) = \tilde{F}_s(\alpha) \).

Therefore \(\tilde{\tau} \) is closed under arbitrary union.

\[
(\tilde{F}_j \cap \tilde{F}_k)(\alpha) = F_j(\alpha) \cap F_k(\alpha) = G_{\alpha j} \cap G_{\alpha k} = G_{\alpha r}
\]
\[= F_{r}(\alpha) \]

That is \(\tilde{F}_{j} \cap \tilde{F}_{k} = \tilde{F}_{r} \in \tilde{\tau} \)

To prove that \(\tilde{\tau}_{\alpha} = \tau_{\alpha} \) for all \(\alpha \in E \)

\[\tilde{\tau}_{\alpha} = \{ \tilde{F}_{j}(\alpha) : \tilde{F}_{j} \in \tilde{\tau} \} \]

\[= \{ G_{\alpha j} : j \in J \} \]

\[= \tau_{\alpha} \text{ for all } \alpha \in E. \]

Remark 3.7: Obtaining the necessary and sufficient conditions for theorem 3.6 is an open problem for researchers in soft topology.

4 Conclusion

In this paper, a link between a soft topology and the parametrized family of topologies induced by the soft topology is identified and characterized.

5 Acknowledgement

The authors are grateful and thankful to the reviewers for their valuable suggestions, constructive comments and directions for the successful revision of the article.

References

